应用数学课堂笔记(一)——欧拉方程

教材

《变分法及其应用——物理、力学、工程中的经典建模》欧斐君 高等教育出版社

有限维到无限维

向量中有有限个元素,它们可以进行加法、数乘、定义范数、定义内积、定义夹角。比如,对于向量 a a a b b b,其夹角余弦值为
c o s &lt; a , b &gt; = ( a , b ) ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ cos&lt;a,b&gt; = \frac{(a,b)}{||a|| \cdot ||b||} cos<a,b>=ab(a,b)

那么,如果把一个向量中的元素数量扩展到无穷,向量就变成了函数,我们尝试仿照向量,对函数定义范数、内积、夹角。首先是内积,它变成了
( f , g ) = ∫ f ( x ) g ( x ) d x (f,g) = \int f(x) g(x) dx (f,g)=f(x)g(x)dx

有了内积,很容易定义出范数。
∣ ∣ f ∣ ∣ = ( f , f ) = ∫ f 2 ( x ) d x ||f|| = \sqrt{(f,f)} = \sqrt{\int f^2(x) dx} f=(f,f) =f2(x)dx

以及夹角。
c o s &lt; f , g &gt; = ( f , g ) ∣ ∣ f ∣ ∣ ⋅ ∣ ∣ g ∣ ∣ cos&lt;f,g&gt; = \frac{(f,g)}{||f|| \cdot ||g||} cos<f,g>=fg(f,g)

有了夹角,我们就可以定义函数的正交,即如果 c o s &lt; f , g &gt; = 0 cos&lt;f,g&gt;=0 cos<f,g>=0,则函数 f f f g g g正交。正交函数族的例子有三角函数(傅里叶分解的基函数),切比雪夫多项式等等。函数在一组两两正交函数 ϕ i ( x ) \phi_i(x) ϕi(x)上的投影,被称为广义傅里叶级数。即
f = ∑ − ∞ ∞ c i ϕ i f = \sum_{-\infty}^{\infty} c_i \phi_i f=ciϕi
其中,
c i = ( f i , ϕ i ) c_i = (f_i, \phi_i) ci=(fi,ϕi)

如果我们只取级数中的 N N N项和 f N f_N fN作为对 f f f的逼近,那么就有误差
e = ∣ ∣ f N − f ∣ ∣ e = || f_N - f || e=fNf
对于这 N N N项的基函数,按 ( f i , ϕ i ) (f_i, \phi_i) (fi,ϕi)选取 c i c_i ci能让误差最小,因此 f N f_N fN是一个最佳逼近。

线性泛函的例子

就像向量函数以向量为自变量,泛函以函数(无限维的向量)为自变量。其映射 J J J 函 数 空 间 → R 函数空间 \rightarrow R R

最速降线

问题:从 ( 0 , 0 ) (0,0) (0,0) ( x 1 , y 1 ) (x_1,y_1) (x1,y1)构建一个光滑斜曲面,使得小球在重力中下降速度最快。

假设曲面的函数为 y = y ( x ) y=y(x) y=y(x),那么有两端的约束 y ( 0 ) = 0 , y ( x 1 ) = y 1 y(0)=0,y(x_1)=y_1 y(0)=0,y(x1)=y1;当小球下落到 ( x , y ) (x,y) (x,y)时,按照能量守恒,它的速度为 v = 2 g y v=\sqrt{2gy} v=2gy ,取一个微元,斜面长度为 1 + y ′ 2 \sqrt{1+y&#x27;^2} 1+y2 ,因此通过这个微元的时间为
t = 1 + y ′ 2 2 g y t = \frac{\sqrt{1+y&#x27;^2}}{\sqrt{2gy}} t=2gy 1+y2
因此通过整个斜面的总时间为
T = ∫ 0 x 1 t d x = ∫ 0 x 1 1 + y ′ 2 2 g y d x T = \int_0^{x_1} t dx = \int_0^{x_1} \frac{\sqrt{1+y&#x27;^2}}{\sqrt{2gy}} dx T=0x1tdx=0x12gy 1+y2 dx

假设这个斜面是连续的,那么解一定存在于如下的函数空间( C 1 C^1 C1表示一阶连续):
A = { y ∣ y ( x ) ∈ C 1 ( x , y ) y ( 0 ) = 0 , y ( x 1 ) = y 1 } A=\left\{ y | \begin{matrix} y(x) \in C^1(x,y) \\ y(0)=0, y(x_1)=y_1 \end{matrix} \right\} A={ yy(x)C1(x,y)y(0)=0,y(x1)=y1}

假设 y ∗ y^* y是最后的解,那么我们要求的问题就变成了一个优化问题
y ∗ = arg ⁡ min ⁡ y ∈ A T y^* = {\arg\min}_{y \in A} T y=argminyAT

一会儿再考虑如何求解这个方程。

极小曲面问题

问题:求一段通过 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)的曲线,绕着 x x x轴旋转后侧面表面积最小。

首先写出面积公式。按 x x x轴分成无数个微元,每个微元都是一个周长为 2 π y 2\pi y 2πy,高为 1 + y ′ 2 \sqrt{1+y&#x27;^2} 1+y2 的长方形,因此总面积为
S = ∫ x 1 x 2 2 π y 1 + y ′ 2 d x S = \int_{x_1}^{x_2} 2 \pi y \sqrt{1+y&#x27;^2} dx S=x1x

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值