一、学习率调整
一个对于调度学习率的建议:如果在验证集上性能不再增加就让学习率除以2或者5,然后继续,学习率会一直变得很小,到最后就可以停止训练了
二、finetun微调
finetune的过程相当于继续训练,跟直接训练的区别是初始化的时候:
a. 直接训练是按照网络定义指定的方式初始化(如高斯随机初始化)
b. finetune是用你已经有的参数文件来初始化(就是之前训练好的caffemodel)
微调有两种情况:比如有4个全连接层A->B->C->D
(1)希望C层的参数不会改变,C前面的AB层的参数也不会改变,这种情况也就是D层的梯度不往前反向传播到D层的输入blob(也就是C层的输出blob 没有得到梯度),可以通过设置D层的propagate_down为false来做到。
propagate_down的数量与输入blob的数量相同,假如你某个层有2个输入blob,那么应该在该layer的Param里面写上两行:
propagate_down : 0 # 第1个输入blob不会得到反向传播的梯度
propagate_down : 0 # 第2个输入blob不会得到反向传播的梯度
这样的话,你这个layer的梯度就不会反向传播啦,前面的所有layer的参数也就不会改变了
(2)希望C层的参数不会改变,但是C前面的AB层的参数会改变,这种情况,只是固定了C层的参数,C层得到的梯度依然会反向传播给前面的B层。只需要将对应的参数blob的学习率调整为0:
你在layer里面加上param { lr_mult: 0 }就可以了,比如全连接层里面:
layer {
type: “InnerProduct”
param { # 对应第1个参数blob的配置,也就是全连接层的参数矩阵的配置
lr_mult: 0 # 学习率为0,其他参数可以看caffe.proto里面的ParamSpec这个类型
}
param { # 对应第2个参数blob的配置,也就是全连接层的偏置项的配置
lr_mult: 0 # 学习率为0
}
}
未完待续。。。。