深度学习之优化器Optimizer介绍

        优化器(Optimizer)是深度学习训练中非常关键的组件,它负责根据损失函数的梯度来更新模型参数,从而使模型性能不断提升。

1. 优化器的作用和重要性

        优化器是训练深度学习模型的核心组件之一。

        它负责根据损失函数的梯度来更新模型参数,推动模型性能不断提高。

        选择合适的优化器可以极大地影响模型的收敛速度和最终性能。

2. 优化器的基本原理

        优化器的基本思路是利用梯度下降法来最小化损失函数。

        每一步都根据当前梯度的方向和大小来更新参数。

        不同的优化器算法主要体现在如何计算和使用梯度的差异。

3. 常见优化器

        主要的优化器类型包括:

3.1 Stochastic Gradient Descent (SGD):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值