优化器(Optimizer)是深度学习训练中非常关键的组件,它负责根据损失函数的梯度来更新模型参数,从而使模型性能不断提升。
1. 优化器的作用和重要性
优化器是训练深度学习模型的核心组件之一。
它负责根据损失函数的梯度来更新模型参数,推动模型性能不断提高。
选择合适的优化器可以极大地影响模型的收敛速度和最终性能。
2. 优化器的基本原理
优化器的基本思路是利用梯度下降法来最小化损失函数。
每一步都根据当前梯度的方向和大小来更新参数。
不同的优化器算法主要体现在如何计算和使用梯度的差异。
3. 常见优化器
主要的优化器类型包括:
3.1 Stochastic Gradient Descent (SGD):