建模杂谈系列16-设备故障预测方法

本文探讨了智能设备在连接互联网并定期向服务器发送数据的情况下,如何利用数据进行故障诊断。介绍了智能设备的功能要求,以及在故障处理流程中如何利用特征提取和模型预测来提升诊断效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 说明

整体上未来的设备都是智能设备,所以应用数据进行故障诊断应该是比较靠谱的。

智能设备(intelligent device)是指任何一种具有计算处理能力的设备、器械或者机器。
功能完备的智能设备必须具备灵敏准确的感知功能、正确的思维与判断功能以及行之有效的执行功能。

假设:这里假设设备可以连接互联网,以一定频次(例如5秒/次)向服务器发送数据。(需要的话服务器也可以秒级的将数据返回设备)如果未来使用5G连接的化,这个时间周期最短可以缩短至数十毫秒一次交换(主要看数据处理的复杂度了)。

2 故障处理总体流程

以下的流程图是基于设备无数据反馈处理能力假设的,未来的设备如果可以根据互联网返回的数据进行修正,那么就加上一个控制模块就可以了(但这就涉及到不同产品可能提供的不同控制参数了,要单独分析)。另外,无论设备可以多智能,一定要在设备的本地端设置允许控制的安全范围,以及异常处理方法,以确保安全。(例如如果反馈的数据是 999度,设备是不会接受这种错误值的)
在这里插入图片描述
智能设备可能具有多个传感器,因此在特征提取时要根据物理的情况进行初步的提取(例如如果有三个温度检测,有一个高那温度特征就是高),有些信号很强,直接就可以用于故障预测了(强规则)。
剩下的就是考虑弱信号的应用了,这也是模型的价值。
在这里插入图片描述
我们仅假设某种产品的某个故障目标(如果是多产品多目标可以用多个模型)。
首先还是建立逻辑回归的基准模型,用于提供变量解释分析,最终要的是提供一个稳定的基准。
然后可以建立多个增强模型,不提供解释,但是通过和基准模型比较,验证其性能更强,从而做出加强的预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值