对偶四元数与旋量(或螺旋理论)之间的转换
坐标系O1绕轴s旋转θ,并移动d即对偶角。用对偶矢量表示为:
假定坐标系O与坐标系O之间的一般刚体运动为先转动四元数q接着再平移2t,或先平移1t再转动四元数q,且
四元数用于矢量的转动变换,则对偶四元数表示对偶矢量的位姿变换,如果令
则对于O1中的一般对偶矢量有如下变换
即
其中
如果用螺旋运动表示刚体运动可以表示为坐标系O1绕轴s旋转θ后沿轴s平移d得到坐标系O2。
用对偶四元数变换
推导螺旋变换。坐标系O1的原点在螺旋轴s上的投影点为R,则
位移 ,又
可得到
又
则
其中
螺旋轴为
对偶角为
,
假设对偶四元数表示为
则螺旋角θ为
螺旋轴s为
平移向量t为
直线距r为
螺距h为
所以可以得到转换螺旋
下面求运动螺旋
对于四元数表示的转动有
,故,
角速度为
带入上式有
故对偶角导数为
即该对偶四元数的运动螺旋表示为