数据分析 Task2:论文作者统计

Task2:论文作者统计

2.1 任务说明

任务主题:论文作者统计,统计所有论文作者出现频率Top10的姓名;
任务内容:论文作者的统计、使用 Pandas 读取数据并使用字符串操作;
任务成果:学习 Pandas 的字符串操作;

2.2 数据处理步骤

在原始arxiv数据集中论文作者authors字段是一个字符串格式,其中每个作者使用逗号进行分隔分,所以我们我们首先需要完成以下步骤:

使用逗号对作者进行切分;
剔除单个作者中非常规的字符;
具体操作可以参考以下例子:

C. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-P. Yuan

# 切分为,其中\\为转义符

C. Ba'lazs
E. L. Berger
P. M. Nadolsky
C.-P. Yuan

当然在原始数据集中authors_parsed字段已经帮我们处理好了作者信息,可以直接使用该字段完成后续统计。

2.3 字符串处理

在Python中字符串是最常用的数据类型,可以使用引号('或")来创建字符串。Python中所有的字符都使用字符串存储,可以使用方括号来截取字符串,如下实例:

var1 = 'Hello Datawhale!'
var2 = "Python Everwhere!"
 
print("var1[-10:]: ", var1[-10:])
print("var2[1:5]: ", var2[0:7])

执行结果为:

var1[-10:]:  Datawhale!  # 此处用到切片语法概念,从倒数第十个元素开始向后读取
var2[1:5]:  Python   #  var2[0:7]是从第一个元素读到第六个元素(左闭右开)

Python中还内置了很多内置函数,非常方便使用:

方法描述
string.capitalize()把字符串的第一个字符大写
string.isalpha()如果 string 至少有一个字符并且所有字符都是字母则返回 True,否则返回 False
string.title()返回"标题化"的 string,就是说所有单词都是以大写开始,其余字母均为小写(见 istitle())
string.upper()转换 string 中的小写字母为大写

2.4 具体代码实现以及讲解

2.4.1 数据读取

# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
data = []
with open("E:/Program Files/datawhale学习/jupyter/arxiv-metadata-oai-snapshot.json", 'r') as f: 
    for idx, line in enumerate(f): 
        d = json.loads(line)
        d = {'authors': d['authors'], 'categories': d['categories'], 'authors_parsed': d['authors_parsed']}
        data.append(d)
        
data = pd.DataFrame(data)
data.shape
data.head()

为了方便处理数据,我们只选择了三个字段进行读取:
在这里插入图片描述
(1796911, 3)

2.4.2 数据统计

接下来我们将完成以下统计操作:

统计所有作者姓名出现频率的Top10;
统计所有作者姓(姓名最后一个单词)的出现频率的Top10;
统计所有作者姓第一个字符的频率;
为了节约计算时间,下面选择部分类别下的论文进行处理:

# 选择类别为cs.CV下面的论文
data2 = data[data['categories'].apply(lambda x: 'cs.CV' in x)]

# 拼接所有作者
all_authors = sum(data2['authors_parsed'], [])

1.lambda x 在categories列中取包含’cs.CV’的元素

2.sum函数具体:sum(iterable[, start])
sum() 函数的第一个参数是可迭代对象,如列表、元组或集合等,第二个参数是起始值,默认为 0 。其用途是以 start 值为基础,再与可迭代对象的所有元素相“加”。
sum() 函数允许带两个参数,且第二个参数才是起点。 可能 sum() 函数用于数值求和比较多,然而用于作列表的求和,就有奇效。它比列表推导式更加优雅简洁!
在这里插入图片描述
在这里插入图片描述
处理完成后all_authors变成了所有一个list,其中每个元素为一个作者的姓名。我们首先来完成姓名频率的统计。

# 拼接所有的作者
authors_names = [' '.join(x) for x in all_authors]
authors_names = pd.DataFrame(authors_names)

# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_names[0].value_counts().head(10).plot(kind='barh')

# 修改图配置
names = authors_names[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

绘制得到的结果:
在这里插入图片描述
接下来统计姓,也就是authors_parsed字段中作者第一个单词:

authors_lastnames = [x[0] for x in all_authors]
authors_lastnames = pd.DataFrame(authors_lastnames)

plt.figure(figsize=(10, 6))
authors_lastnames[0].value_counts().head(10).plot(kind='barh')

names = authors_lastnames[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

绘制得到的结果,从结果看出这些都是华人或者中国姓氏

在这里插入图片描述
统计所有作者姓第一个字符的频率,方法相同:

authors_lastnames_firstchar = [x[0][0] for x in all_authors]
authors_lastnames_firstchar = pd.DataFrame(authors_lastnames_firstchar)

plt.figure(figsize=(10, 6))
authors_lastnames_firstchar[0].value_counts().head(10).plot(kind='barh')

names = authors_lastnames_firstchar[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页