集成学习(上)偏差与方差理论

1.优化基础模型

1.1 训练均方误差与测试均方误差:

  • 最常用的评价指标为均方误差,即: M S E = 1 N ∑ i = 1 N ( y i − f ^ ( x i ) ) 2 MSE = \frac{1}{N}\sum\limits_{i=1}^{N}(y_i -\hat{ f}(x_i))^2 MSE=N1i=1N(yif^(xi))2,其中 f ^ ( x i ) \hat{ f}(x_i) f^(xi) 是样本 x i x_i xi应用- 建立的模型 f ^ \hat{f} f^预测的结果。
  • 如果所用的数据是训练集上的数据,那么这个误差为训练均方误差;如果使用测试集的数据计算均方误差,那么则称为测试均方误差。
  • 一个模型的训练均方误差最小时,不能保证测试均方误差同时也很小。对于这种想法构造的模型,一般在训练误差达到
    最小时,测试均方误差一般很大
    在这里插入图片描述
    上右图所示:模型在训练误差很小,但是测试均方误差很大时,我们称这种情况叫模型的过拟合。

1.2 偏差-方差的权衡:

E ( y 0 − f ^ ( x 0 ) ) 2 = Var ⁡ ( f ^ ( x 0 ) ) + [ Bias ⁡ ( f ^ ( x 0 ) ) ] 2 + Var ⁡ ( ε ) E\left(y_{0}-\hat{f}\left(x_{0}\right)\right)^{2}=\operatorname{Var}\left(\hat{f}\left(x_{0}\right)\right)+\left[\operatorname{Bias}\left(\hat{f}\left(x_{0}\right)\right)\right]^{2}+\operatorname{Var}(\varepsilon) E(y0f^(x0))2=Var(f^(x0))+[Bias(f^(x0))]2+Var(ε)

  • 测试均方误差的期望值可以分解为 f ^ ( x 0 ) \hat{f}(x_0) f^(x0)的方差、 f ^ ( x 0 ) \hat{f}(x_0) f^(x0)的偏差平方和误差项 ϵ \epsilon ϵ的方差。
  • 测试均方误差的期望不可能会低于误差的方差,因此我们称 Var ⁡ ( ε ) \operatorname{Var}(\varepsilon) Var(ε)建模任务的难度,这个量在我们的任务确定后是无法改变的,也叫做不可约误差
  • 一般来说,模型的复杂度越高,f的方差就会越大
  • 谓模型的方差就是:用不同的数据集去估计 f f f时,估计函数的改变量。
  • eg:通过输入中国人身高去预测我们的体重。从13亿中抽1000个样本进行建模,我们对这个抽样的过程重复100遍,就会得到100个1000人的样本集。
    在这里插入图片描述

我们使用线性回归模型估计参数就能得到100个线性回归模型。由于样本抽取具有随机性,我们得到的100个模型不可能参数完全一样,那么这100个模型之间的差异就叫做方差。显然,我们希望得到一个稳定的模型,也就是在不同的样本集估计的模型都不会相差太大,即要求f的方差越小越好。

  • 偏差度量的是单个模型的学习能力,而方差度量的是同一个模型在不同数据集上的稳定性。
  • 目标:偏差和方差找权衡都需要小,才能使得测试均方差最小。

1.3 特征提取

需要对测试误差进行估计,估计的方式有两种:训练误差修正与交叉验证。

1.3.1 训练误差修正

前面的讨论我们已经知道,模型越复杂,训练误差越小,测试误差先减后增。

  • 构造一个特征较多的模型使其过拟合(此时训练误差很小而测试误差很大)。
  • 加入关于特征个数的惩罚。(当我们的训练误差随着特征个数的增加而减少时,惩罚项因为
    特征数量的增加而增大,抑制了训练误差随着特征个数的增加而无休止地减小)。
    数学量:
    C p = 1 N ( R S S + 2 d σ ^ 2 ) C_p = \frac{1}{N}(RSS + 2d\hat{\sigma}^2) Cp=N1(RSS+2dσ^2),其中d为模型特征个数, R S S = ∑ i = 1 N ( y i − f ^ ( x i ) ) 2 RSS = \sum\limits_{i=1}^{N}(y_i-\hat{f}(x_i))^2 RSS=i=1N(yif^(xi))2 σ ^ 2 \hat{\sigma}^2 σ^2为模型预测误差的方差的估计值,即残差的方差。
    AIC赤池信息量准则: A I C = 1 d σ ^ 2 ( R S S + 2 d σ ^ 2 ) AIC = \frac{1}{d\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2) AIC=dσ^21(RSS+2dσ^2)
    BIC贝叶斯信息量准则: B I C = 1 n ( R S S + l o g ( n ) d σ ^ 2 ) BIC = \frac{1}{n}(RSS + log(n)d\hat{\sigma}^2) BIC=n1(RSS+log(n)dσ^2)

1.3.2 交叉验证(对测试误差的直接估计)

  • 优势:能够给出测试误差的一个直接估计

  • K折交叉验证:我们把训练样本分成K等分,然后用K-1个样本集当做训练集,剩下的一份样本集为验证集去估计由K-1个样本集得到的模型的精度,这个过程重复K次取平均值得到测试误差的一个估计 C V ( K ) = 1 K ∑ i = 1 K M S E i CV_{(K)} = \frac{1}{K}\sum\limits_{i=1}^{K}MSE_i CV(K)=K1i=1KMSEi

  • 5折交叉验证如下图:(蓝色的是训练集,黄色的是验证集)

  • 在这里插入图片描述

  • 最优子集选择、向前逐步选择:通过计算RSS进行迭代,每次选择RSS值最小的模型,最后选择测试误差最小的模型作为最优模型

1.4 压缩估计(正则化)

对回归的系数进行约束或者加罚的技巧对p个特征的模型进行拟合,显著降低模型方差,这样也会提高模型的拟合效果。将回归系数往零的方向压缩,这也就是为什么叫压缩估计的原因了。

  • 岭回归(L2正则化的例子):
    在线性回归中,我们的损失函数为 J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 J(w)=i=1N(yiw0j=1pwjxij)2, 我们在线性回归的损失函数的基础上添加对系数的约束或者惩罚,即:
    J ( w ) = ∑ i = 1 N ( y i − w 0 − ∑ j = 1 p w j x i j ) 2 + λ ∑ j = 1 p w j 2 ,      其 中 , λ ≥ 0 w ^ = ( X T X + λ I ) − 1 X T Y J(w) = \sum\limits_{i=1}^{N}(y_i-w_0-\sum\limits_{j=1}^{p}w_jx_{ij})^2 + \lambda\sum\limits_{j=1}^{p}w_j^2,\;\;其中,\lambda \ge 0\\ \hat{w} = (X^TX + \lambda I)^{-1}X^TY J(w)=i=1N(yiw0j=1pwjxij)2+λj=1pwj2,λ0w^=(XTX+λI)1XTY
    调节参数 λ \lambda λ的大小是影响压缩估计的关键, λ \lambda λ越大,惩罚的力度越大,系数则越趋近于0,反之,选择合适的 λ \lambda λ对模型精度来说十分重要。岭回归通过牺牲线性回归的无偏性降低方差,有可能使得模型整体的测试误差较小,提高模型的泛化能力。
    • Lasso回归(L1正则化的例子):使用系数向量的L1范数替换岭回归中的L2范数

1.5 降维

主成分分析(PCA):
通过最大投影方差将原始空间进行重构,即由特征相关重构为特征无关,即落在某个方向上的点(投影)的方差最大

示例运行

# 引入相关科学计算包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use("ggplot") 
import seaborn as sns
import warnings
warnings.filterwarnings('ignore') 
from sklearn import datasets
boston = datasets.load_boston() # 返回一个类似于字典的类
X = boston.data
y = boston.target
features = boston.feature_names
boston_data = pd.DataFrame(X,columns=features)
boston_data["Price"] = y
boston_data.head()

在这里插入图片描述

  • 向前逐步回归
#定义向前逐步回归函数
def forward_select(data,target):
    variate=set(data.columns)  #将字段名转换成字典类型
    variate.remove(target)  #去掉因变量的字段名
    selected=[]
    current_score,best_new_score=float('inf'),float('inf')  #目前的分数和最好分数初始值都为无穷大(因为AIC越小越好)
    #循环筛选变量
    while variate:
        aic_with_variate=[]
        for candidate in variate:  #逐个遍历自变量
            formula="{}~{}".format(target,"+".join(selected+[candidate]))  #将自变量名连接起来
            aic=ols(formula=formula,data=data).fit().aic  #利用ols训练模型得出aic值
            aic_with_variate.append((aic,candidate))  #将第每一次的aic值放进空列表
        aic_with_variate.sort(reverse=True)  #降序排序aic值
        best_new_score,best_candidate=aic_with_variate.pop()  #最好的aic值等于删除列表的最后一个值,以及最好的自变量等于列表最后一个自变量
        if current_score>best_new_score:  #如果目前的aic值大于最好的aic值
            variate.remove(best_candidate)  #移除加进来的变量名,即第二次循环时,不考虑此自变量了
            selected.append(best_candidate)  #将此自变量作为加进模型中的自变量
            current_score=best_new_score  #最新的分数等于最好的分数
            print("aic is {},continuing!".format(current_score))  #输出最小的aic值
        else:
            print("for selection over!")
            break
    formula="{}~{}".format(target,"+".join(selected))  #最终的模型式子
    print("final formula is {}".format(formula))
    model=ols(formula=formula,data=data).fit()
    return(model)
import statsmodels.api as sm #最小二乘
from statsmodels.formula.api import ols #加载ols模型
forward_select(data=boston_data,target="Price")

在这里插入图片描述

lm=ols("Price~LSTAT+RM+PTRATIO+DIS+NOX+CHAS+B+ZN+CRIM+RAD+TAX",data=boston_data).fit()
lm.summary()

在这里插入图片描述

  • 岭回归
from sklearn import linear_model
reg_rid = linear_model.Ridge(alpha=.5)
reg_rid.fit(X,y)
reg_rid.score(X,y)

0.739957023371629

  • Lasso回归
from sklearn import linear_model
reg_lasso = linear_model.Lasso(alpha = 0.5)
reg_lasso.fit(X,y)
reg_lasso.score(X,y)

0.7140164719858566

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值