【自动驾驶行业观察】Mobileye 自动驾驶方案

本文聚焦于Mobileye的自动驾驶方案,其独特之处在于不依赖物体预测,而是利用机器学习定义语义状态空间,并结合蒙特卡洛树搜索和强化学习进行路径规划,所需算力仅为感知模块的1%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文资料来自于Shashua教授的演讲。

比较有趣的是Mobileye的技术方案,没有做物体预测!道理其实也很简单,因为准确预测物体的运动本身就很困难,规划本身就是个比较复杂的模块,为了做规划另外做一个和规划一样复杂的模块,貌似确实有点多余。

Mobileye用了机器学习的方法,定义了 语义状态空间,比如刹车,左右转向,加速等等,用了蒙特卡洛树搜索的方法配合加强学习进行训练。这个方法的算力要求只有感知的1%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值