散度、梯度、张量相关的数学公式

本文是关于梯度、散度、旋度、张量相关的数学表达式和相关运算。相关的物理意义以后来写。

对相关记号做一下说明:
黑体希腊文表示张量,比如 τ \pmb{\tau} τττ;
浅色斜体表示标量,比如 u , v , w u,v,w u,v,w等;
下黑体小罗马字符表示向量,比如 u , v , w \pmb{\mathrm{u}},\pmb{\mathrm{v}},\pmb{\mathrm{w}} uuu,vvv,www等;
下黑体大罗马字符表示矩阵,比如 A , B , C \pmb{\mathrm{A}},\pmb{\mathrm{B}},\pmb{\mathrm{C}} AAA,BBB,CCC等。

除此之外,小括号 " ( ) " "()" "()"内的是标量;中括号 " [ ] " "[]" "[]"内的是向量;大括号 " { } " "\{\}" "{}"内的是张量。

①点积: i ⋅ j = j ⋅ k = i ⋅ k = 0 i ⋅ i = j ⋅ j = k ⋅ k = 1 \pmb{\mathrm{i}}\cdot\pmb{\mathrm{j}}=\pmb{\mathrm{j}}\cdot\pmb{\mathrm{k}}=\pmb{\mathrm{i}}\cdot\pmb{\mathrm{k}}=0\qquad\qquad\pmb{\mathrm{i}}\cdot\pmb{\mathrm{i}}=\pmb{\mathrm{j}}\cdot\pmb{\mathrm{j}}=\pmb{\mathrm{k}}\cdot\pmb{\mathrm{k}}=1 iiijjj=jjjkkk=iiikkk=0iiiiii=jjjjjj=kkkkkk=1

②叉积:
i × i = j × j = k × k = 0 i × j = k = − i × j j × k = i = − k × j k × i = j = − i × k \begin{aligned}&\pmb{\mathrm{i}}\times\pmb{\mathrm{i}}=\pmb{\mathrm{j}}\times\pmb{\mathrm{j}}=\pmb{\mathrm{k}}\times\pmb{\mathrm{k}}=0 \qquad\qquad\pmb{\mathrm{i}}\times\pmb{\mathrm{j}}=\pmb{\mathrm{k}}=-\pmb{\mathrm{i}}\times\pmb{\mathrm{j}} \\&\pmb{\mathrm{j}}\times\pmb{\mathrm{k}}=\pmb{\mathrm{i}}=-\pmb{\mathrm{k}}\times\pmb{\mathrm{j}} \qquad\qquad\qquad\quad\pmb{\mathrm{k}}\times\pmb{\mathrm{i}}=\pmb{\mathrm{j}}=-\pmb{\mathrm{i}}\times\pmb{\mathrm{k}}\end{aligned} iii×iii=jjj×jjj=kkk×kkk=0iii×jjj=kkk=iii×jjjjjj×kkk=iii=kkk×jjjkkk×iii=jjj=iii×kkk

有了上面基本的计算式,下面的操作就比较简单理解了:

对标量求梯度变为向量: [ ∇ s ] = ∂ s ∂ x i + ∂ s ∂ y j + ∂ s ∂ z k ( ∇ = ∂ ∂ x i + ∂ ∂ y j + ∂ ∂ z k ) [\nabla s]=\frac{\partial s}{\partial x}\pmb{\mathrm{i}}+\frac{\partial s}{\partial y}\pmb{\mathrm{j}}+\frac{\partial s}{\partial z}\pmb{\mathrm{k}}\qquad (\nabla =\frac{\partial }{\partial x}\pmb{\mathrm{i}}+\frac{\partial }{\partial y}\pmb{\mathrm{j}}+\frac{\partial }{\partial z}\pmb{\mathrm{k}}) [s]=xsiii+ysjjj+zskkk(=xiii+yjjj+zkkk)
对向量求散度为标量:
( ∇ ⋅ v ) = ( ∂ ∂ x i + ∂ ∂ y j + ∂ ∂ z k ) ⋅ ( u i + v j + w k ) = ∂ u ∂ x + ∂ v ∂ y + ∂ w ∂ z \begin{aligned} (\nabla \cdot\pmb{\mathrm{v}})&=(\frac{\partial}{\partial x}\pmb{\mathrm{i}}+\frac{\partial}{\partial y}\pmb{\mathrm{j}}+\frac{\partial}{\partial z}\pmb{\mathrm{k}})\cdot(u\pmb{\mathrm{i}}+v\pmb{\mathrm{j}}+w\pmb{\mathrm{k}})\\&=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z} \end{aligned} (vvv)=(xiii+yjjj+zkkk)(uiii+vjjj+wkkk)=xu+yv+zw
对向量求旋度:
[ ∇ × v ] = ( ∂ ∂ x i + ∂ ∂ y j + ∂ ∂ z k ) × ( u i + v j + w k ) = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z u v w ∣ \begin{aligned} [\nabla \times\pmb{\mathrm{v}}]&=(\frac{\partial}{\partial x}\pmb{\mathrm{i}}+\frac{\partial}{\partial y}\pmb{\mathrm{j}}+\frac{\partial}{\partial z}\pmb{\mathrm{k}})\times(u\pmb{\mathrm{i}}+v\pmb{\mathrm{j}}+w\pmb{\mathrm{k}})\\&=\begin{vmatrix} \pmb{\mathrm{i}}&\pmb{\mathrm{j}}&\pmb{\mathrm{k}}\\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ u&v&w \end{vmatrix} \end{aligned} [×vvv]=(xiii+yjjj+zkkk)×(uiii+vjjj+wkkk)=iiixujjjyvkkkzw
以上是基本的运算表达式,下面是几个常用的公式:
( ∇ ⋅ ( ∇ s ) ) = ∇ 2 s = ∂ 2 s ∂ x 2 + ∂ 2 s ∂ y 2 + ∂ 2 s ∂ z 2 (\nabla\cdot(\nabla s))={\nabla}^2s=\frac{\partial^2 s}{\partial x^2}+\frac{\partial^2 s}{\partial y^2}+\frac{\partial^2 s}{\partial z^2} ((s))=2s=x22s+y22s+z22s
[ ∇ ⋅ ( ∇ v ) ] = ∇ 2 v = ( ∇ 2 u ) i + ( ∇ 2 v ) j + ( ∇ 2 w ) k [\nabla\cdot(\nabla \pmb{\mathrm{v}})]={\nabla}^2\pmb{\mathrm{v}}=({\nabla}^2u)\pmb{\mathrm{i}}+({\nabla}^2v)\pmb{\mathrm{j}}+({\nabla}^2w)\pmb{\mathrm{k}} [(vvv)]=2vvv=(2u)iii+(2v)jjj+(2w)kkk
[ ( v ⋅ ∇ ) v ] = ( u i + v j + w k ) ⋅ ( ∂ ∂ x i + ∂ ∂ y j + ∂ ∂ z k ) ( u i + v j + w k ) = ( u ∂ u ∂ x + v ∂ v ∂ y + w ∂ w ∂ z ) i + ( u ∂ u ∂ x + v ∂ v ∂ y + w ∂ w ∂ z ) j + ( u ∂ u ∂ x + v ∂ v ∂ y + w ∂ w ∂ z ) k \begin{aligned}[(\pmb{\mathrm{v}}\cdot\nabla)\pmb{\mathrm{v}}]&=(u\pmb{\mathrm{i}}+v\pmb{\mathrm{j}}+w\pmb{\mathrm{k}})\cdot(\frac{\partial}{\partial x}\pmb{\mathrm{i}}+\frac{\partial}{\partial y}\pmb{\mathrm{j}}+\frac{\partial}{\partial z}\pmb{\mathrm{k}})(u\pmb{\mathrm{i}}+v\pmb{\mathrm{j}}+w\pmb{\mathrm{k}})\\&=(u\frac{\partial u}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial w}{\partial z})\pmb{\mathrm{i}}+(u\frac{\partial u}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial w}{\partial z})\pmb{\mathrm{j}}\\&+(u\frac{\partial u}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial w}{\partial z})\pmb{\mathrm{k}}\end{aligned} [(vvv)vvv]=(uiii+vjjj+wkkk)(xiii+yjjj+zkkk)(uiii+vjjj+wkkk)=(uxu+vyv+wzw)iii+(uxu+vyv+wzw)jjj+(uxu+vyv+wzw)kkk
张量:
{ v v } = ( u i + v j + w k ) ( u i + v j + w k ) = u u i i + u v i j + u w i k + v u j i + v v j j + v w j k + w u k i + w v k j + w w k k = [ u u u v u w v u v v v w w u w v w w ] \begin{aligned} \{\pmb{\mathrm{v}}\pmb{\mathrm{v}}\}&=(u\pmb{\mathrm{i}}+v\pmb{\mathrm{j}}+w\pmb{\mathrm{k}})(u\pmb{\mathrm{i}}+v\pmb{\mathrm{j}}+w\pmb{\mathrm{k}})\\&= uu\pmb{\mathrm{i}}\pmb{\mathrm{i}}+uv\pmb{\mathrm{i}}\pmb{\mathrm{j}}+uw\pmb{\mathrm{i}}\pmb{\mathrm{k}}+vu\pmb{\mathrm{j}}\pmb{\mathrm{i}}+vv\pmb{\mathrm{j}}\pmb{\mathrm{j}}+vw\pmb{\mathrm{j}}\pmb{\mathrm{k}}+wu\pmb{\mathrm{k}}\pmb{\mathrm{i}}+wv\pmb{\mathrm{k}}\pmb{\mathrm{j}}+ww\pmb{\mathrm{k}}\pmb{\mathrm{k}}\\&=\begin{bmatrix} uu&uv&uw\\ vu&vv&vw\\ wu&wv&ww \end{bmatrix} \end{aligned} {vvvvvv}=(uiii+vjjj+wkkk)(uiii+vjjj+wkkk)=uuiiiiii+uviiijjj+uwiiikkk+vujjjiii+vvjjjjjj+vwjjjkkk+wukkkiii+wvkkkjjj+wwkkkkkk=uuvuwuuvvvwvuwvwww
对向量求梯度为张量:
{ ∇ v } = ( ∂ ∂ x i + ∂ ∂ y j + ∂ ∂ z k ) ( u i + v j + w k ) = [ ∂ u ∂ x ∂ v ∂ x ∂ w ∂ x ∂ u ∂ y ∂ v ∂ y ∂ w ∂ y ∂ u ∂ z ∂ v ∂ z ∂ w ∂ z ] \begin{aligned} \{\nabla \pmb{\mathrm{v}}\}&=(\frac{\partial}{\partial x}\pmb{\mathrm{i}}+\frac{\partial}{\partial y}\pmb{\mathrm{j}}+\frac{\partial}{\partial z}\pmb{\mathrm{k}})(u\pmb{\mathrm{i}}+v\pmb{\mathrm{j}}+w\pmb{\mathrm{k}})\\&= \begin{bmatrix} \frac{\partial u}{\partial x}&\frac{\partial v}{\partial x}&\frac{\partial w}{\partial x}\\ \frac{\partial u}{\partial y}&\frac{\partial v}{\partial y}&\frac{\partial w}{\partial y}\\ \frac{\partial u}{\partial z}&\frac{\partial v}{\partial z}&\frac{\partial w}{\partial z} \end{bmatrix} \end{aligned} {vvv}=(xiii+yjjj+zkkk)(uiii+vjjj+wkkk)=xuyuzuxvyvzvxwywzw

以上便是这篇文章全部内容,难免有些错误~~~。


封面图来自网络。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值