[dify]官方模板DeepResearch工作流学习笔记

一、功能

根据用户输入的主题进行多轮搜索并生成综合报告

1、流程分析

1.1 初始阶段

Start节点:接收用户输入的"depth"参数,决定搜索的深度/轮数
参数可以不填,不填的时候取默认值3
Create Array节点:根据depth参数生成一个数组(如depth=3则生成[0,1,2]),用于控制迭代次数

def main(depth: int) -> dict:
    depth = depth or 3
    array = list(range(depth))
    return {
        "array": array,
        "depth": depth
    }

输入是一个int类型的数值,如果没有输入取默认值3
返回一个dict类型,包含两个变量,array是一个number的数组,depth是一个int类型值

1.2 迭代搜索阶段(核心循环)

工作流的主体是一个迭代循环,每次迭代包含以下步骤:

1、搜索决策
LLM节点:使用deepseek-v3模型分析当前状态,决定:

是否需要继续搜索(shouldContinue)、下一个搜索主题(nextSearchTopic)
输出为JSON格式
提示词:

你是一个研究以下主题的研究助手。
你目前发现了什么?还有哪些问题尚未解答?接下来应该具体研究哪些方面?

#输出要求
1、不要输出与已搜索主题完全相同的主题。
2、如果需要进一步搜索信息,请设置 nextSearchTopic。
3、如果已获得足够信息,请将 shouldContinue 设为 false。
4、请以 JSON 格式输出
{nextSearchTopic: str | None
shouldContinue: bool 
}

在工作流中用到4个会话变量,以及记忆功能
2、JSON解析
1、代码执行2节点:从LLM输出中提取JSON内容
2、模板转换4节点:格式化JSON数据
3、参数提取器节点:提取nextSearchTopic和shouldContinue字段
大模型节点的输入类似下面的文字
{
“text”: “json\n{\n \"nextSearchTopic\": \"Dify平台的功能和架构概述\",\n \"shouldContinue\": true\n}\n
}
通过代码执行节点,提取tex文本中json字符串
输入:
{
“arg1”: “json\n{\n \"nextSearchTopic\": \"Dify平台的功能和架构概述\",\n \"shouldContinue\": true\n}\n
}
代码:

import re
import json
def main(arg1: str) -> dict:
    json_pattern = r'```json\s*([\s\S]*?)\s*```'
    match = re.search(json_pattern, arg1.strip())

    if not match:
        raise ValueError("文本中未找到有效的JSON内容")

    json_str = match.group(1)
	#去除转义的
    json_str = re.sub(r'\\n', '', json_str)
    #.strip() 默认会移除字符串 开头和结尾 的 所有空白字符(包括 \n, \t, 等)
    json_str = json_str.strip()
    json_str=json_str.replace('\\"', '"').replace('\\n', '')
    # 解析为Python对象
    parsed_data = json.loads(json_str)
    return {"result":parsed_data}

输出:

{
  "result": {
    "nextSearchTopic": "Dify平台的功能和架构概述",
    "shouldContinue": true
  }
}

代码执行结果是一个json对象,通过模板转换节点,转换为字符串,用参数提取器节点提取json里的变量

3、变量更新
变量赋值节点:更新以下变量:

将nextSearchTopic写入会话变量
将shouldContinue写入会话变量
将nextSearchTopic追加到已搜索topics列表
4、条件判断
IF/ELSE节点:检查shouldContinue值
如果为true:执行Tavily搜索
Tavily Search节点:使用nextSearchTopic进行网络搜索
Assign Variables节点:将搜索结果追加到findings列表
Intermediate Output Format节点:生成中间状态报告
如果为false:跳过搜索,进入空操作分支

1.3、结果聚合

变量聚合器节点:收集所有迭代的结果
最终报告生成
Reasoning Model节点:使用deepseek-r1模型综合分析所有findings
提示词:

根据调查结果,撰写一份关于该主题的全面分析报告。
提供重要见解、结论以及尚存的不确定性。必要时请引用来源。本分析应非常全面且详细,预期为长篇文本。

1.4 生成报告

生成详细的调查报告,包含重要发现、结论和未解决的问题
Answer节点:输出最终报告

二、工作流特点

多轮迭代搜索:根据depth参数和模型判断动态控制搜索轮数
自适应搜索主题:每轮搜索后,模型会决定下一步要探索的子主题
避免重复搜索:系统会记录已搜索的topics,避免重复
综合报告生成:最后将所有发现汇总分析,生成详细报告

三、数据流

用户输入 → 初始分析 → 多轮搜索 → 结果收集 → 综合分析 → 报告输出

<think>好的,我现在需要帮助用户了解Dify工作流在衍生品估值中的IT实现。首先,我需要明确用户的问题核心:Dify工作流如何应用于衍生品估值,特别是技术实现方面。用户可能对Dify的功能和衍生品估值的流程有一定了解,但希望具体知道如何结合使用,以及技术上的细节。 首先,我应该回顾Dify的基本概念。Dify是一个低代码/无代码平台,用于构建AI驱动的应用程序,支持工作流设计。它的核心优势在于可视化编排和集成多种AI模型,比如自然语言处理、数据分析等。用户可以通过拖拽组件来构建复杂的工作流程,而无需深入编码。 接下来,衍生品估值涉及金融数学模型,比如Black-Scholes模型、蒙特卡洛模拟等。这些模型通常需要大量的计算和数据处理。传统上,金融机构可能使用Python、R或者C++等编程语言结合定量库来实现这些模型,但开发周期长,维护成本高。用户可能希望利用Dify工作流来简化这一过程,提高开发效率,同时保持准确性和可靠性。 接下来,我需要考虑Dify工作流如何具体应用于衍生品估值的各个步骤。例如,数据输入可能需要市场数据(如股票价格、波动率、利率等),然后通过定价模型计算,最后输出结果。Dify工作流可以将这些步骤模块化,每个模块负责一个任务,比如数据清洗、模型选择、计算执行、结果验证等。 在技术实现方面,Dify可能支持与外部数据源的集成,比如通过API获取实时市场数据。然后,用户可以使用内置或自定义的AI模型来处理数据,比如预测波动率。对于复杂的数学计算,可能需要集成Python脚本或调用外部计算服务,比如QuantLib库。Dify的可视化界面允许将这些组件连接起来,形成自动化的工作流。 另外,需要考虑性能问题。衍生品估值,尤其是蒙特卡洛模拟,计算量很大。Dify是否支持分布式计算或GPU加速?或者是否需要与云计算平台集成来处理大规模计算?这可能涉及到工作流中的任务分发和资源管理模块。 还有验证和测试环节。金融模型需要严格的验证,确保计算结果准确。Dify工作流中可以加入校验步骤,比如对比不同模型的结果,或者进行敏感性分析,自动生成报告。这可能需要集成测试框架或数据分析工具。 然后,用户权限和安全性也是关键。衍生品估值涉及敏感数据,Dify工作流需要确保数据加密、访问控制,符合金融行业的合规要求。这可能涉及到Dify的安全模块配置,或者与企业的身份管理系统集成。 最后,实际案例或现有应用情况如何?是否有金融机构已经成功应用Dify进行衍生品估值?如果有,他们的架构是怎样的?这可能作为参考,帮助用户设计自己的实现方案。 总结起来,我需要将Dify的功能分解,对应到衍生品估值的各个步骤,说明如何通过工作流连接这些模块,并讨论技术实现中的关键点,如数据集成、模型计算、性能优化、安全合规等。同时,结合用户提供的引用,虽然引用内容主要关于模型能力,但可以侧面说明Dify可能集成了先进的AI模型,提升估值中的某些环节,比如数据预处理或结果分析。此外,引用中提到的DeepResearch模型可能类似Dify的某些功能,但需要明确Dify的具体技术路径。 可能还需要比较传统实现方式与Dify工作流的优缺点,突出Dify在快速迭代、降低技术门槛、灵活集成等方面的优势。同时,指出可能的局限性,比如复杂模型的计算效率问题,需要外部服务支持等。 最后,生成相关问题,引导用户深入探讨性能优化、具体模型集成、安全措施等方向。</think>### Dify工作流在衍生品估值中的IT实现 #### 1. 核心逻辑与架构设计 Dify工作流通过**可视化编排引擎**将衍生品估值流程分解为模块化组件,典型架构包含: - **数据输入层**:集成市场数据API(如Bloomberg、Reuters)或内部数据库,支持实时获取标的资产价格$S_t$、波动率$\sigma$、无风险利率$r$等参数[^1] - **模型计算层**:嵌入数值算法(如蒙特卡洛模拟、有限差分法)或调用外部计算引擎(如QuantLib),例如欧式期权估值使用Black-Scholes公式: $$ C = S_0 N(d_1) - K e^{-rT} N(d_2) $$ 其中$d_1 = \frac{\ln(S_0/K)+(r+\sigma^2/2)T}{\sigma\sqrt{T}}$, $d_2 = d_1 - \sigma\sqrt{T}$ - **验证模块**:自动对比不同模型输出结果,执行希腊字母敏感性分析$\Delta=\frac{\partial C}{\partial S}$ #### 2. 关键技术实现 - **低代码集成**:通过Python Operator封装量化模型代码,支持直接调用NumPy、Pandas等科学计算库 - **分布式计算**:对蒙特卡洛模拟等计算密集型任务,集成Spark或Dask实现并行计算加速 - **动态参数传递**:使用上下文变量实现跨节点数据流转,例如将隐含波动率计算结果传递给风险分析模块 #### 3. 典型工作流示例 ```mermaid graph TD A[市场数据接入] --> B[参数校验] B --> C{模型选择} C -->|欧式期权| D[Black-Scholes计算] C -->|美式期权| E[LSM算法] D/E --> F[风险指标计算] F --> G[报告生成] ``` #### 4. 性能优化策略 - **缓存机制**:对固定期限的利率曲线等静态数据启用缓存,减少重复计算 - **硬件加速**:通过CUDA Operator调用GPU加速矩阵运算,提升蒙特卡洛路径生成速度 - **异步执行**:对独立计算任务(如不同合约的估值)采用异步并行执行模式 #### 5. 安全合规实现 - **数据加密**:使用AES-256加密传输中的敏感参数 - **审计追踪**:记录完整的工作流执行日志,包括输入参数哈希值$H(P)=sha256(p_1||p_2...)$ - **权限控制**:基于RBAC模型实现细粒度访问控制,确保只有授权用户可修改定价模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值