BERT实验部分,针对不同任务训练为什么需要引入新参数

在 BERT 的 fine-tuning 过程中,引入新的向量 (C) 和 (W) 是为了适应特定任务的需求。让我们来一步步解读:

1. 向量 (C) 的引入

  • (C) 是从 BERT 最后一层隐藏状态中对应于特殊标记 [CLS] 的向量。
  • [CLS] 是在每个输入序列的开头添加的一个特殊标记,BERT 设计中,这个标记的向量会被用作整个输入序列(无论是单句还是句对)的“聚合表示”(aggregate representation)。
  • 作用:BERT 经过预训练后,可以对 [CLS] 产生一个全局的语义表示。在 fine-tuning 阶段,使用这个向量 (C) 来代表输入的全局语义,作为下游任务的输入特征。

2. 向量 (W) 的引入

  • (W) 是在 fine-tuning 阶段新引入的参数矩阵,其大小为 (K \times H),其中 (K) 是分类标签的数量,(H) 是隐藏层的维度大小(即 BERT 输出的维度)。
  • 作用:(W) 用来将 BERT 产生的全局语义表示 (C) 映射到任务的标签空间。它是一个线性分类层,通过将 (C) 和 (W) 的乘积输入到 softmax 函数中,从而得到每个标签的概率分布。

3. 计算损失

  • 损失函数是通过 (C) 和 (W) 计算的。具体来说,(C) 和 (W) 相乘,再通过 softmax 函数得到预测的标签概率分布,然后与真实标签计算交叉熵损失。
  • 意义:这一步的目的在于通过优化损失函数,微调 BERT 模型的参数,使其更好地适应特定的下游任务(如分类任务)。

4. 总结

  • 向量 (C) 代表了输入序列的整体语义,是从 BERT 模型的预训练中提取出来的。
  • 向量 (W) 是为了特定任务引入的分类层参数,用于将 (C) 映射到标签空间,从而进行分类。
  • 这些步骤确保了 BERT 能够从一个通用的预训练模型转化为针对特定任务优化的模型。

在这里插入图片描述
这两个参数 (C) 和 (W) 是在模型设计和训练过程中分别由模型自动生成和人类手动指定的。

1. 向量 (C)

  • 模型自动生成:向量 (C) 是由 BERT 模型在处理输入序列时自动生成的。具体来说,当一个输入序列(句子或句对)通过 BERT 模型的多层 Transformer 后,模型会在最后一层提取出特殊标记 [CLS] 的对应隐藏状态。这个隐藏状态向量 (C) 就代表了整个输入序列的聚合表示,模型根据它来进行进一步的预测。

2. 向量 (W)

  • 人类指定:向量 (W) 是在人类设计模型时引入的新的参数。在 fine-tuning 阶段,(W) 是一个线性分类层的权重矩阵,其大小为 (K \times H),其中 (K) 是分类任务的标签数(由具体任务决定),(H) 是 BERT 模型的隐藏层维度(由模型架构决定)。这一参数是模型在 fine-tuning 时需要学习的,也就是模型通过优化算法(如梯度下降)来调整 (W) 的值,以适应具体任务。

总结

  • (C) 是模型基于输入数据自动生成的结果。
  • (W) 是模型设计时由人类指定的需要学习的参数,在 fine-tuning 时会通过训练来更新。

  • 在这里插入图片描述
    是的,引入新参数(如 (W))主要是为了适应特定的任务需求,并且计算损失函数。下面是详细解释:

引入新参数的目的

  1. 任务特定的适应性

    • 在 BERT 的预训练阶段,模型已经学会了如何理解语言的广泛语义,但它并没有针对特定任务(例如文本分类、命名实体识别等)进行优化。
    • 引入新参数(如 (W))是为了将 BERT 的预训练模型的通用表示(如通过向量 (C) 得到的表示)转化为特定任务的预测输出。例如,在分类任务中,(W) 用于将 BERT 的输出映射到不同的分类标签。
  2. 计算损失函数

    • 损失函数的计算是模型训练的重要部分,它用于评估模型的预测效果并指导模型参数的更新。
    • 通过引入新参数(如分类层的权重矩阵 (W)),我们能够计算模型的预测结果,并将其与真实标签进行比较,进而计算损失值。这一过程是模型优化的核心。

具体步骤

  1. 生成表示

    • BERT 模型处理输入数据后,生成 [CLS] 标记的隐藏状态向量 (C)。
  2. 映射到任务标签

    • 使用新引入的分类层参数 (W) 对向量 (C) 进行线性变换,得到任务标签的概率分布。这个步骤将 BERT 的输出适配到特定任务的标签空间。
  3. 计算损失

    • 使用 softmax 函数将线性变换后的结果转化为概率分布。
    • 计算预测结果与真实标签之间的损失值(如交叉熵损失)。
  4. 优化模型

    • 基于计算出的损失,通过优化算法(如梯度下降)更新模型参数,包括 BERT 的预训练参数和新引入的分类层参数 (W)。

总结

引入新参数是为了将预训练的 BERT 模型应用于具体的下游任务,并且通过计算损失函数来优化这些参数,以提升模型在特定任务上的表现。

  • 13
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值