在量化中,bf16
、fp16
、fp32
、int8
等是指不同的数值精度格式,用于表示模型中的权重和激活值。以下是它们的详细解释:
1. fp32(32位浮点数)
- 全称:32-bit floating point。
- 特点:
- 使用32位存储一个浮点数。
- 包括1位符号位、8位指数位和23位尾数位。
- 优点:
- 高精度,适合训练和推理。
- 广泛支持,几乎所有硬件都支持。
- 缺点:
- 存储和计算开销较大。
- 用途:
- 深度学习模型的默认精度格式。
2. fp16(16位浮点数)
- 全称:16-bit floating point。
- 特点:
- 使用16位存储一个浮点数。
- 包括1位符号位、5位指数位和10位尾数位。
- 优点:
- 减少内存占用和计算量。
- 加速训练和推理,尤其适合GPU。
- 缺点:
- 精度较低,可能导致数值溢出或下溢。
- 用途:
- 混合精度训练(如NVIDIA的AMP,Automatic Mixed Precision)。
- 推理加速。
3. bf16(16位脑浮点数)
- 全称:16-bit Brain Floating Point。
- 特点:
- 使用16位存储一个浮点数。
- 包括1位符号位、8位指数位和7位尾数位。
- 优点:
- 动态范围与fp32相同(指数位与fp32一致)。
- 适合深度学习训练,减少内存占用。
- 缺点:
- 精度比fp16低(尾数位较少)。
- 用途:
- 深度学习训练(如Google TPU支持bf16)。
- 适合需要大动态范围的场景。
4. int8(8位整数)
- 全称:8-bit integer。
- 特点:
- 使用8位存储一个整数。
- 无符号整数范围:0 到 255。
- 有符号整数范围:-128 到 127。
- 优点:
- 显著减少内存占用和计算量。
- 加速推理,适合边缘设备。
- 缺点:
- 精度损失较大。
- 需要量化感知训练(QAT)或后量化(PTQ)来减少精度损失。
- 用途:
- 模型推理加速(如移动端、嵌入式设备)。
5. int4(4位整数)
- 全称:4-bit integer。
- 特点:
- 使用4位存储一个整数。
- 无符号整数范围:0 到 15。
- 有符号整数范围:-8 到 7。
- 优点:
- 极低的内存占用和计算量。
- 缺点:
- 精度损失非常大。
- 需要复杂的量化策略和硬件支持。
- 用途:
- 极端资源受限的场景(如超低功耗设备)。
对比总结
精度格式 | 位数 | 动态范围 | 精度 | 优点 | 缺点 | 用途 |
---|---|---|---|---|---|---|
fp32 | 32 | 大 | 高 | 高精度,广泛支持 | 内存和计算开销大 | 训练和推理 |
fp16 | 16 | 中 | 中 | 减少内存占用,加速训练和推理 | 精度较低,可能溢出或下溢 | 混合精度训练,推理加速 |
bf16 | 16 | 大 | 中低 | 动态范围大,适合训练 | 精度较低 | 深度学习训练(如TPU) |
int8 | 8 | 小 | 低 | 显著减少内存占用,加速推理 | 精度损失较大 | 边缘设备推理 |
int4 | 4 | 很小 | 极低 | 极低内存占用 | 精度损失非常大 | 超低功耗设备 |
选择建议
- 训练:
- 默认使用
fp32
。 - 如果需要加速训练,可以使用
fp16
或bf16
(尤其是硬件支持时)。
- 默认使用
- 推理:
- 如果需要高性能,使用
fp16
或bf16
。 - 如果需要极致压缩,使用
int8
或int4
。
- 如果需要高性能,使用
通过选择合适的精度格式,可以在模型性能和计算效率之间找到最佳平衡。