在量化中,bf16、fp16、fp32、int8的含义

在量化中,bf16fp16fp32int8 等是指不同的数值精度格式,用于表示模型中的权重和激活值。以下是它们的详细解释:


1. fp32(32位浮点数)

  • 全称:32-bit floating point。
  • 特点
    • 使用32位存储一个浮点数。
    • 包括1位符号位、8位指数位和23位尾数位。
  • 优点
    • 高精度,适合训练和推理。
    • 广泛支持,几乎所有硬件都支持。
  • 缺点
    • 存储和计算开销较大。
  • 用途
    • 深度学习模型的默认精度格式。

2. fp16(16位浮点数)

  • 全称:16-bit floating point。
  • 特点
    • 使用16位存储一个浮点数。
    • 包括1位符号位、5位指数位和10位尾数位。
  • 优点
    • 减少内存占用和计算量。
    • 加速训练和推理,尤其适合GPU。
  • 缺点
    • 精度较低,可能导致数值溢出或下溢。
  • 用途
    • 混合精度训练(如NVIDIA的AMP,Automatic Mixed Precision)。
    • 推理加速。

3. bf16(16位脑浮点数)

  • 全称:16-bit Brain Floating Point。
  • 特点
    • 使用16位存储一个浮点数。
    • 包括1位符号位、8位指数位和7位尾数位。
  • 优点
    • 动态范围与fp32相同(指数位与fp32一致)。
    • 适合深度学习训练,减少内存占用。
  • 缺点
    • 精度比fp16低(尾数位较少)。
  • 用途
    • 深度学习训练(如Google TPU支持bf16)。
    • 适合需要大动态范围的场景。

4. int8(8位整数)

  • 全称:8-bit integer。
  • 特点
    • 使用8位存储一个整数。
    • 无符号整数范围:0 到 255。
    • 有符号整数范围:-128 到 127。
  • 优点
    • 显著减少内存占用和计算量。
    • 加速推理,适合边缘设备。
  • 缺点
    • 精度损失较大。
    • 需要量化感知训练(QAT)或后量化(PTQ)来减少精度损失。
  • 用途
    • 模型推理加速(如移动端、嵌入式设备)。

5. int4(4位整数)

  • 全称:4-bit integer。
  • 特点
    • 使用4位存储一个整数。
    • 无符号整数范围:0 到 15。
    • 有符号整数范围:-8 到 7。
  • 优点
    • 极低的内存占用和计算量。
  • 缺点
    • 精度损失非常大。
    • 需要复杂的量化策略和硬件支持。
  • 用途
    • 极端资源受限的场景(如超低功耗设备)。

对比总结

精度格式位数动态范围精度优点缺点用途
fp3232高精度,广泛支持内存和计算开销大训练和推理
fp1616减少内存占用,加速训练和推理精度较低,可能溢出或下溢混合精度训练,推理加速
bf1616中低动态范围大,适合训练精度较低深度学习训练(如TPU)
int88显著减少内存占用,加速推理精度损失较大边缘设备推理
int44很小极低极低内存占用精度损失非常大超低功耗设备

选择建议

  • 训练
    • 默认使用 fp32
    • 如果需要加速训练,可以使用 fp16bf16(尤其是硬件支持时)。
  • 推理
    • 如果需要高性能,使用 fp16bf16
    • 如果需要极致压缩,使用 int8int4

通过选择合适的精度格式,可以在模型性能和计算效率之间找到最佳平衡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值