最优控制的必要条件——Free Terminal Time Problems

在实际应用中, 我们还会关注在一个不固定的时间间隔内最大化 (最小化) 目标泛函. 例如

\min\limits_{u, T} x(T)+\int_{0}^{T}u^{2}(t) dt

subject to  \dot{x}(t) = \alpha x(t)-u(t)                              

  x(0)=x_{0}                  

在这个问题中, 最优控制和最优终止时间都需要被确定. 因此, 我们必须重新得到最优控制以及最优终止时间的必要条件. 

考虑具有如下一般形式的自由终止时间的最优化问题:

\max\limits_{u, T}\int_{t_{0}}^{T} f(t, x(t), u(t))dt+\phi(T, x(T))

subject to  \dot{x}(t)=g(t, x(t), u(t))                                             (1)         

                                                 x(t_{0})=x_{0}

从而, 目标函数为:

J(u, T)=\int_{t_{0}}^{T}f(t, x(t), u(t))dt+\phi(T, x(T))

令 (u^{*}, T^{*}) 是最优对, 即 J(u, T)\leq J(u^{*}, T^{*})<\infty. 令 h 是一个分段连续函数, \epsilon 是一个实数, 从而 u^{\epsilon}(t)=u^{*}(t)+\epsilon h(t) 是一个控制. 由于 J(u, T) 在 u^{*}, T^{*} 处达到最大值, 所以

0=\lim\limits_{\epsilon \rightarrow 0} \frac{J(u^{*}, T^{*})-J(u^{\epsilon}, T^{*})}{\epsilon}

参考  (最优控制(控制无边界)的必要条件推导- Lagrange problem-CSDN博客) 的推导方法, 我们可以得到:

0=\frac{\partial H}{\partial u}\mid_{u=u^{*}},

\dot{\lambda}=-\frac{\partial H}{\partial x}=-f_{x}-\lambda g_{x},

\lambda(T^{*})=\phi_{x}(T^{*}, x(T^{*})),

其中 \phi_{x} 是关于状态变量的偏导数. 但是, 这并没有为最优终止时间 T^{*} 提供任何信息.  考虑实值 \delta \geq t_{0}-T^{*}, 则 T^{*}+\delta 是一个允许的终止时间. 从而有必要考虑大于 [t_{0}, T^{*}] 区间上的 x^{*} 和 u^{*}

首先, 我们假设 u^{*} 在 T^{*} 处是左连续的, 并且 u^{*}=u^{*}(T^{*}), t>T^{*}, 从而 u^{*} 在 T^{*} 处是连续的.  对于 x^{*} 我们也做同样的假设. 因为 J(u, T) 在 u^{*}, T^{*} 处达到最大值, 所以

0=\lim\limits_{\epsilon \rightarrow 0} \frac{J(u^{*}, T^{*}+\epsilon)-J(u^{*}, T^{*})}{\epsilon}

0~=~\lim\limits_{\delta \rightarrow 0}\frac{1}{\delta}\left[ \int_{t_{0}}^{T^{*}+\delta} f(t, x^{*}, u^{*})dt +\phi(T^{*}+\delta, x^{*}(T^{*}+\delta)) -\int_{t_{0}}^{T^{*}} f(t, x^{*}, u^{*})dt -\phi(T^{*}, x^{*}(T^{*})) \right ] \\ ~~~=~ \lim\limits_{\delta \rightarrow 0}\frac{1}{\delta}\int_{T^{*}}^{T^{*}+\delta} f(t, x^{*}, u^{*})dt + \frac{\phi(T^{*}+\delta, x^{*}(T^{*}+\delta)) - \phi(T^{*}, x^{*}(T^{*})) }{\delta}\\ ~~~=~f(T^{*}, x^{*}(T^{*}), u^{*}(T^{*})) + \phi_{t}(T^{*}, x^{*}(T^{*}))+\phi_{x}(T^{*}, x^{*}(T^{*})) \frac{d x^{*}}{d t}(T^{*}) \\

所以

f(T^{*}, x^{*}(T^{*}), u^{*}(T^{*})) + \lambda(T^{*}) g(T^{*}, x^{*}(T^{*}), u^{*}(T^{*})) + \phi_{t}(T^{*}, x^{*}(T^{*}))\\ =H(T^{*}, x^{*}(T^{*}), u^{*}(T^{*}), \lambda(T^{*})) + \phi_{t}(T^{*}, x^{*}(T^{*}))\\ =0

从而, 我们得到关于自由终止时间问题的新的一个必要条件:

H(T^{*}, x^{*}(T^{*}), u^{*}(T^{*}), \lambda(T^{*})) + \phi_{t}(T^{*}, x^{*}(T^{*})) =0

特别地, 若 \phi 仅仅是关于 x(T) 的函数, 那么只需要满足 Hamilonian 在最优终止时刻与最优控制下取值为零, 即

H(T^{*}, x^{*}(T^{*}), u^{*}(T^{*}), \lambda(T^{*})) =0.

此外, 在自由终止时刻问题中有一类特殊问题——Time Optimal Control, 即最小化时间问题. 这个想法很简单: 在最短的时间内将一个 (或多个) 状态从给定的初始位置移动到指定的最终位置. 问题的一般描述如下:

    \max\limits_{u, T}\int_{t_{0}}^{T} 1dt                            

subject to     \dot{x}(t)=g(t, x(t), u(t))                                   (1)         

                                                 x(t_{0})=x_{0}, x(T)=x_{1}

a\leq u(t)\leq b                       

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值