最优控制的存在性

总结一下最优控制的存在性定理, 以及我自己的疑惑, 如果有大神提供解答, 小生感激不尽!

首先考虑如下控制系统: 

\left\{\begin{matrix} \dot{x}(t)=f(t, x(t), u(t))\\ x(t)|_{t=t_{0}}=x_{0} \end{matrix}\right.

其中 x(t) 表示系统的状态变量,  u(t) 表示控制函数, 假设控制 u(t) 在允许的控制集 U 上是Lebesgue可积的. 目标函数 J(x_{0}, u) 中的被积函数为 L(t, x, u), 即

J(t_{0}, u)=\int_{t_{0}}^{t_{1}}L(t, x(t), u(t))dt+\phi(e)

(PS: 老实说, 这里的\phi(e)一直都不明白是什么意思, 可能是终止时刻的限制??? 我所阅读的本专业的文献中涉及到的目标函数大多只包含前半部分, 不过本专业文献涉及到的最优控制写的非常笼统, 所以只能自己啃控制专业的书籍)

定理: 假设f连续并且存在正常数C_{1}, C_{2} 使得如下假设成立: 

(1) \mid f(t, x, u) \mid \leqslant C_{1} (1+\mid x \mid +\mid u\mid ),

(2) \mid f(t, x^{\prime}, u)- f(t, u, x) \mid \leqslant C_{2} \mid x^{\prime}-x \mid (1+\mid u \mid), x, x^{\prime}\in E^{n}, u\in U.

被积函数L也是连续的, 此外, 若还满足如下条件: 

(a) \mathfrak{F}^{\prime} is not empty, where \mathfrak{F^{\prime}} denote the class of all (x_{0}, u);

(b) U is closed;

(c) S is compact and  \phi is continuous on S;

(d) \mathit{\tilde{F}}(t, x) is convex for each (t, x)\in E^{n+1};

(e) L(t, x, u)\geqslant g(u), where g is continuous and \mid u \mid^{-1} g(u)\rightarrow +\infty as \mid u\mid\rightarrow \infty, u\in U.

Then there exist (x^{*}_{0}, u^{*}) minimizing J(x_{0}, u) on \mathfrak{F^{\prime}}

上面的定理就是最优控制的存在性定理, 定理中的条件(c), (d), (e)可以被等价的替换成如下三个条件: 

(c') \phi is continuous on S; there exists a compact S^{\prime}\subset S such that e\in S and J(x_{0}, u)\leqslant \mu_{1} imply e \in S^{\prime}, where \mu=\inf J(x_{0},u), and \mu_{1}> \mu.

(d') U is convex, f(t, x, u)=\alpha(t, x)+\beta(t, x)uL(t, x, \cdot )  is convex on U.

(e') L(t, x, u)\geqslant c_{1} \mid u\mid^{k}-c_{2}, c_{1}>0, c_{2} \in R, k>1.

自此, 最优控制的存在性定理叙述完毕. 为了避免出错, 选择了用英文的原文进行说明. 下面结合楼主的专业以及自己的理解口语化重新叙述一下最优控制的存在性定理, 如有理解错误之处, 请大家直接指出!

定理: 若函数f(t, x, u ) 和 L(t, x, u) 满足如下条件: 

(i) 对于给定的初值 x_{0}, 控制 u 组成的集合 \{(x_{0}, u)\} 以及满足初始条件的状态方程的解是非空的.

(ii) 控制集 U 是非空的凸闭集.

(iii) 函数f(t, x, u)是一个关于控制 u 的线性函数.

(iv) 目标函数的被积函数 L(t, x, u) 关于控制函数 u 是凸的.

(v) 存在正常数 C_{1}> 0, 使得  \mid f(t, x, u) \mid \leqslant C_{1} (1+\mid x \mid +\mid u\mid ).

(vi) 函数f(t, x, u) 关于 x 满足Lipschitz连续, 即存在常数 C_{2}> 0, 使得

\mid f(t, x^{\prime}, u)- f(t, u, x) \mid \leqslant C_{2} \mid x^{\prime}-x \mid

where x, x^{\prime}\in E^{n}.

(vii) 存在常数 c_{1}>0, c_{2}\in R, k>1, 使得 L(t, x, u)\geqslant c_{1} \mid u\mid^{k}-c_{2}.

则最优控制 u^{*} 存在, 且 J(u^{*})=\min_{u\in U} J(u)

Tips: 两个最优控制存在性的定理中,(a), (b), (d') 与(i), (ii), (iii) +(iv)是对应的, 假设(1),(2) 与(v), (vi)是对应的, (e')与(vii)是对应的. 第一个定理中的(c)并没有出现在第二个定理的叙述中, 我觉得是由于我们给定了初值??? 还是说我们并没有对终止时刻系统的状态进行限制???还是说是目标函数中不含有 \phi(e)???

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值