什么是最优控制问题?

本文讨论了最优控制问题的基本概念,包括系统运动方程、性能指标的表达以及在满足闭集约束下的解的概念。焦点在于寻找在给定初始条件和控制下,使得性能指标最小的最优解。
摘要由CSDN通过智能技术生成

为了陈述最优控制问题, 先介绍如下符号:

令 U \in E^{m} 且是一个闭子集, t \in E^{1}x \in E^{n}u \in E^{m}f(t, x, u) 是一个向量函数

f: E^{1}\times E^{n} \times E^{m} \rightarrow E^{n}

并且 f 连续且关于 x 具有连续的一阶偏导数. 令 \phi(t_{0}, t_{1}, x_{0}, x_{1}) 是一个向量函数

\phi: E^{1} \times E^{1} \times E^{n} \times E^{n} \rightarrow E^{k}

并且 \phi 具有一阶连续的偏导数.

对于满足如下微分方程: 

\dot{x}=f(t, x(t), u(t)), t \in [t_{0}, t_{1}], x(t_{0})=x_{0}                 (1)

的解 x(t) 叫做关于控制 u(t) 和初始条件 x_{0} 的轨迹. x(t) 在 t 时刻的值称为系统在 t 时刻的状态. 方程 (1) 称为系统的运动方程.

\phi在 (t_{0}, t_{1}, x(t_{0} ), x(t_{1})) 处的第一个分量

\phi_{1}(t_{0}, t_{1}, x(t_{0}), x(t_{1}))                  (2)

是系统的性能指标. 为了体现指标对初始状态 x_{0}=x(t_{0}) 和控制 u(t) 的依赖性, 我们将性能指标表示为

J(x_{0}, u)=\phi_{1}(t_{0}, t_{1}, x(t_{0}), x(t_{1})).

\phi 剩下的 k-1 个分量通过方程

\phi_{j}(t_{0}, t_{1}, x(t_{0}), x(t_{1}))=0, j=2, ..., k              (3)

定义系统轨迹的最终条件. 如果系统 (1) 在 [t_{0}, t_{1}] 上满足初始条件 x(t_{0})=x_{0} 的解 x(t) 也满足(3) 式, 则由初始条件 x_{0} 和控制 u=u(t) 所组成的 (x_{0}, u) 是可行的(feasible).

令 \mathfrak{F} 表示所有可行对 (x_{0}, u) 的类,  则最优控制问题就是在 \mathfrak{F} 中找到使得相应的性能指标 (2) 最小的元素 (x_{0}, u), 并称使性能指标达到最小的 (x_{0}, u) 为最优初始条件和最优控制. 

最优控制问题与经典的三类优化问题的区别之一就是, 最优控制问题要求 U 是一个闭集, 而Mayer, Lagrange, Bolza problems 中的 U 为开集. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值