控制u的线性问题——Bang-Bang Controls

本文解释了Bang-Bang控制在最优控制理论中的概念,涉及线性函数、Hamiltonian函数、开关函数的定义及其特性,强调了如何通过证明switchingfunction仅在单点满足来确认最优控制的Bang-Bang性质。
摘要由CSDN通过智能技术生成

在读文献时, 常常遇到作者证明一个控制是Bang-Bang控制的定理, 那么Bang-Bang控制到底是什么呢?

考虑如下最优控制问题

\max\limits_{u}\int_{t_{0}}^{t_{1}}f_{1}(t, x)+u(t)f_{2}(t, x)dt

subject to \dot{x}(t)=g_{1}(t, x)+u(t)g_{2}(t, x)

                                                               x(0)=x_{0}                                  (1)                         

  a\leq u(t)\leq b

我们可以注意到目标函数积分下的函数以及系统等号右侧均是关于控制 u(t) 的线性函数. 因此, Hamiltonian函数也是关于控制 u 的线性函数:

H=[f_{1}(t, x)+\lambda(t) g_{1}(t, x)]+ u(t) [f_{2}(t, x)+\lambda(t)g_{2}(t, x)]        (2)

最优控制的必要性条件中 \dot{\lambda}(t)=-\frac{\partial H}{\partial x} 仍然是正常的, 但是关于控制的最优性条件:

\frac{\partial H}{\partial u}=f_{2}(t, x)+\lambda(t)g_{2}(t, x)                       (3)

我们必须利用 \frac{\partial H}{\partial u} 的符号来最大化关于控制 u 的 Hamilonian 函数, 但是当 f_{2}+\lambda g_{2}=0 时, 并没有关于 u^{*} 的信息. 

定义

 \psi(t)=f_{2}(t, x)+\lambda(t)g_{2}(t, x)        (4)

称其为开关函数 (switching function). 我们可以得到:

u^{*}=\left\{\begin{matrix} a & \rm{if} ~\psi(t)<0 \\ ?& \rm{if} ~\psi(t)=0 \\ b& \rm{if} ~\psi(t)>0. \end{matrix}\right.                         (5)

如果 \psi(t)=0 只在一些单点处满足, 在任何一个区间上均不成立, 那么就称此种情形下的 u^{*} 是 Bang-Bang 控制. 事实上, 在该情形下, 最优控制时一个分段常值函数, 仅在上限和下限之间切换. 发生切换的单点称为 switching times. 

因此, 证明最优控制 u^{*} 是 Bang-Bang 控制, 主要就是证明 \psi(t)=0 仅在单点处成立 (常利用反证法). 

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值