2021-10-22

本文详细介绍了线性模型的原理和应用,包括线性回归、对数几率回归、线性判别分析(LDA)以及多分类学习策略。线性回归通过最小二乘法确定参数,对数几率回归利用Sigmoid函数实现分类,LDA旨在最大化类别间距离。面对类别不平衡问题,提出了再平衡策略。此外,还提及了多分类学习中的纠错输出码(ECOC)方法来解决多分类任务。
摘要由CSDN通过智能技术生成

Task 02 西瓜书第二次打卡(第三章)

3 线性模型

3.1 基本形式

基本形式: f ( x ) = w 1 x 1 + w 2 x 2 + ⋯ + w d x d + b f(x)=w_1x_1+w_2x_2+\dots+w_dx_d+b f(x)=w1x1+w2x2++wdxd+b f ( x i ) = w T x i + b f(x_i)=w^Tx_i+b f(xi)=wTxi+b
非线性模型:可在线性模型基础上通过引入层级结构或者高维映射得到。

3.2 线性回归

1.定义:线性回归试图学得一个线性模型以尽可能准确地预测实值输出标记
试图学得: f ( x i ) = w x i + b f(x_i)=wx_i+b f(xi)=wxi+b 使得 f ( x i ) ∽ y i f(x_i)\backsim y_i f(xi)yi
2.确定 w w w b b b:均方误差最小化(最小二乘法)
3.最小二乘法:试图找到一条直线,使所有样本 到直线上的欧氏距离之和最小
4.最优解
5.多元线性回归:样本有d个属性

3.3 对数几率回归

1.定义:对数几率函数是一种“Sigmoid”函数,单调可微,任意阶可导(是一种分类学习方法
2.公式: y = 1 1 + e − ( w T x + b ) y=\frac{1}{1+e^-(w^Tx+b)} y=1+e(wTx+b)1
3.求解 w 和 b方法:极大似然法 引用这位仁兄的解释

3.4线性判别分析 LDA

1.定义:将样例投影到一条直线上,使得同类投影点尽可能相近,异类投影点尽可能远离;对新样本进行分类时,将其投影到一条直线上,根据投影点位置确定新样本的类别。
2.二维示意图:二维示意图
3.计算方法:同类投影点协方差尽可能小,异类样本投影点的类中心之间距离尽可能大,同时考虑二者

3.5 多分类学习

1.基本思路:拆解法:将多分类任务拆为若干个二分类任务求解。
2.经典的拆分策略:一对一(训练N(N-1)/2个分类器)、一对其余(训练N个分类器)、多对多
一对一拆分 示意图
3.MvM常用技术:纠错输出码(ECOC:Error Correcting Output Codes)
ECOC分为两步:
(1)编码:对N个类别做M次划分,每次划分将一部分类别划分为正类,一部分划分为反类,从而形成一个二分类训练集;这样一共产生M个训练集,可以训练出M个分类器。(类别划分通过编码矩阵指定)
(2)解码:M个分类器分别对测试样本进行预测,这些预测标记组成一个编码。将这个预测编码与每个类别各自的编码进行比较,返回其中距离最小的类别作为最终预测结果。
4.编码矩阵:有二元码(正类、反类)、三元码(正类、反类、停用类)。
在这里插入图片描述

3.6 类别不平衡问题

1.定义:指分类任务中不同类别的训练样例数目差别很大的情况
2.基本策略:再缩放(再平衡):代价敏感学习的基础
正常: y 1 − y > m + m − \frac{y}{1-y}>\frac{m^+}{m^-} 1yy>mm+ 则预测为正例
调整为: y 1 1 − y 1 = y 1 − y ∗ m − m + \frac{y^1}{1-y^1}=\frac{y}{1-y}*\frac{m^-}{m^+} 1y1y1=1yym+m(1)
3.三大做法:第一类做法是直接对训练集里的反类样例进行==“欠采样”,即去除一些反例使得正、反例数目接近,然后进行学习;第二类时对训练集里的正类样例进行“过采样”==,及增加一些正例使得正、反列数目接近,再进行学习;第三类则是直接基于原始训练集进行学习,但在用训练好的分类器进行预测时,将公式(1)嵌入到决策过程中,称为“阈值移动”

3.7 阅读材料

1.稀疏表示

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值