引言:为什么需要使用二阶滤波器呢?因为在一阶滤波器中超过截止频率的部分衰减幅度比较小,在有些情况并满足不了我们的需求。一阶滤波器的增益通常是每过10倍频为-20dB,而二阶滤波器可以达到-40dB。在相同信号的情况下,相比一阶,二阶可以把该信号的增益降到更低。
简单有源二阶
首先我们来看一阶滤波器的仿真图
根据幅频特性曲线来看,该低通滤波器的截止频率在1.6khz左右,运放在此刻做的是电压跟随器的作用,没有放大倍数的作用。
(截止频率计算公式:1/2ΠRC 不懂的可以去这里看,这里有详细的说明)滤波器初步入门(非常全面)-CSDN博客
我们来看看二阶滤波器的设计仿真结果
可以看到过渡带的曲线明显比一阶滤波器的更加陡了,也就是衰减的幅度更大了,但是出现了一个新的问题,就是原来的截止频率的衰减也会更多,从-3dB增大到-9dB了,此刻的截止频率就从原来的1.6khz到500多hz了。(如下图)
根据推算得出以下结果
这个简单二阶滤波器的截止频率会变成原来一阶滤波器的0.37倍。
为了截止频率不要衰减的那么快,尽量保持在原先的截止频率,于是新加了一个正反馈,对这个电路进行一个改进。
压控电压源二阶LPF
该电路的优点是可以把想要输出的频率进行指定额外的放大输出,而且可以不影响其他频率的增益
如下图(低通)
当f在指定频率时放大增益为20dB,而通带和过渡带的频率因为运放的影响增益为(1+R4/R2),两者互不影响。(这里的f是1/2ΠRC)
过渡带会受到这个放大倍数影响
品质因素决定了这个指定频率的放大倍数,但品质因素和放大倍数不是直接关系
品质因素
右上角为品质因素公式,Aup是通带放大倍数,当2<Aup<3时(1<Rf/R1<2),Q>1,此时当Aup越接近于3时,品质因素越大放大倍数越大,当Au=2时,Q=1,放大倍数为通带的放大倍数。当1<Au<2时,Q<1,此时增益为负,Q越小越明显。(需要注意的是Aup不能大于3,否则会引起自激振荡)
当2<Aup<3时(该电路的f=700hz)
当Au=2时
当1<Au<2时
R1R2阻值要调高点,因为现实中电阻有误差,电阻太小一点误差就会导致增益出现很大的变化
如果不用放大信号的话,该电路的放大信号会增加一些不稳定因素。可以降上面电路改进一下,将Q设成1,也就是变成电压跟随器,并改一下其中一个电容的大小。
简化的二阶低通滤波
该电路的截止频率如图
仿真图,上面是改进后的电路,下面是最简单的二阶滤波器
他们两个的差别在于用同样的元器件,加了正反馈的电路可以获得更大的带宽。
二阶高通滤波电路
相比低通就是R3去接在运放的输出端
带通滤波器
如果要设置一个带通滤波器(300hz~3k),那么就可以用低通和高通组成,低通的截止频率要在3k,高通的截止频率为300hz。
这是一个放大倍数为1的带通滤波器。
单电源运放(以上面的带通滤波器为示例)
此电路需要在输入加入一个偏置电压,注意加偏置电压时候要与输入信号之间加一个电容(10uf)
偏置电压也可以这样加,本来电阻为15k,但将两电阻并联后也等于15k使用可以等效替换,如何再加入电压中间就会有4.5V的分压,由于前面本身就有电容所以不用额外在加一个。
总结:相对一阶电路来说,二阶的过渡带更为陡峭,能满足一些需求,二阶分简单和压控电压源二阶(有放大和无放大),他们的区别是简答的截止频率会比一阶的低很多,在元器件选型时可能更加麻烦,所以通常使用压控电压源二阶。
补充:
下面以低通滤波器来说明他们是如何划分的:
过渡带的频率曲线比较陡峭,通频带的曲线有明显变化
当频率响应曲线在过渡带比较缓和,且通频带没有明显波动时