基于Mealpy库优化CNN-BiLSTM-Attention电力负荷预测研究(Python代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 算法概述

2. CNN-BiLSTM-Attention模型

3. 优化策略

3.1 参数优化

3.2 模型结构优化

4. 实施步骤

5. 结论

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

在电力负荷预测领域,结合深度学习模型(如CNN-BiLSTM-Attention)与元启发式优化算法(如GWO, HHO, WOA, PSO, BMO, RIME, IWO, TPO)是一种有效的策略,旨在提高预测精度和模型效率。下面,我将概述这些算法的基本思想,并讨论如何结合它们来优化CNN-BiLSTM-Attention模型进行电力负荷预测。

1. 算法概述

  • GWO (Grey Wolf Optimizer): 模仿灰狼的社会等级和狩猎行为,通过α、β、δ和ω狼之间的协作来寻找最优解。
  • HHO (Harris Hawks Optimization): 基于哈里斯鹰的狩猎行为,通过模拟鹰的软围攻、硬围攻和分散搜索来优化问题。
  • WOA (Whale Optimization Algorithm): 模仿座头鲸的捕食行为(如泡泡网捕食法)来寻找全局最优解。
  • PSO (Particle Swarm Optimization): 通过模拟鸟群觅食行为,粒子在解空间中移动并更新自己的位置和速度以找到最优解。
  • BMO (Biogeography-based Optimization): 基于生物地理学理论,通过模拟物种迁移和栖息地变化来优化问题。
  • RIME (Randomly-weighted Incremental Model Evolution): 一种基于增量模型演化的随机加权方法,用于优化模型结构和参数。
  • IWO (Invasive Weed Optimization): 模仿杂草入侵和竞争行为,通过模拟杂草的繁殖和扩散来优化问题。
  • TPO (Teaching-learning-based Optimization): 模仿班级中的教学和学习过程,通过教师与学生的互动来优化问题。

2. CNN-BiLSTM-Attention模型

CNN-BiLSTM-Attention模型结合了卷积神经网络(CNN)用于特征提取,双向长短期记忆网络(BiLSTM)用于捕捉时间序列的前后依赖关系,以及注意力机制(Attention)来关注重要的输入部分。

3. 优化策略

3.1 参数优化

使用上述元启发式算法优化CNN-BiLSTM-Attention模型中的关键参数,如学习率、隐藏层单元数、卷积核大小、注意力机制中的权重等。这些算法可以自动搜索参数空间,找到最优的参数组合。

3.2 模型结构优化

对于更复杂的优化任务,可以考虑使用RIME等算法来优化模型的结构,如增减CNN或BiLSTM的层数、改变注意力机制的类型等。

4. 实施步骤

  1. 数据预处理:包括数据清洗、归一化、特征选择等。
  2. 模型构建:搭建CNN-BiLSTM-Attention模型的基本框架。
  3. 定义优化问题:将模型参数或结构作为优化变量,定义优化目标(如最小化预测误差)。
  4. 选择优化算法:根据问题特性和需求选择合适的元启发式算法。
  5. 算法实现:将优化算法与模型训练过程结合,通过迭代优化找到最优解。
  6. 结果评估:使用测试集评估优化后的模型性能,并与未优化的模型进行比较。
  7. 模型部署:将优化后的模型部署到实际应用中。

5. 结论

结合元启发式优化算法和CNN-BiLSTM-Attention模型进行电力负荷预测,可以显著提高预测精度和模型效率。然而,不同算法和模型参数对预测结果的影响较大,因此需要通过实验和验证来选择最合适的优化策略和模型配置。

📚2 运行结果

 

 

 

部分代码:

# In[7]:
# 这里来个多特征输入,单步预测的案例
n_in = 5  # 输入前5行的数据
n_out = 2  # 预测未来1步的数据
or_dim = values.shape[1]        # 记录特征数据维度
num_samples = 800  # 可以设定从数据中构建多少个样本用于本次网络的训练与测试。
scroll_window = 1  #如果等于1,下一个数据从第二行开始取。如果等于2,下一个数据从第三行开始取
res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
# 把数据集分为训练集和测试集
values = np.array(res)
# 将前面处理好的DataFrame(data)转换成numpy数组,方便后续的数据操作。

n_train_number = int(num_samples * 0.70)
# 计算训练集的大小。
# 设置70%作为训练集
# int(...) 确保得到的训练集大小是一个整数。
# 先划分数据集,在进行归一化,这才是正确的做法!
Xtrain = values[:n_train_number, :n_in*or_dim]
Ytrain = values[:n_train_number, n_in*or_dim:]


Xtest = values[n_train_number:, :n_in*or_dim]
Ytest = values[n_train_number:,  n_in*or_dim:]

# 对训练集和测试集进行归一化
m_in = MinMaxScaler()
vp_train = m_in.fit_transform(Xtrain)  # 注意fit_transform() 和 transform()的区别
vp_test = m_in.transform(Xtest)  # 注意fit_transform() 和 transform()的区别

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张鲁一航,杨彦明,陈永展,等.基于VMD-CNN-BiLSTM的变工况涡扇发动机剩余寿命预测[J].北京航空航天大学学报, 2024.DOI:10.13700/j.bh.1001-5965.2021.0051.

[2]赵征,周孜钰,南宏钢.基于VMD的CNN-BiLSTM超短期风电功率多步区间预测[J].华北电力大学学报, 2022(004):049.

[3]杨进昆,党建武,杨景玉,等.基于时序分析及CNN-BiLSTM-AM的阶跃型滑坡位移预测[J].国外电子测量技术, 2024, 43(1):126-134.

[4]邵星,曹洪宇,王翠香,等.一种基于注意力机制的VMD-CNN-LSTM短期风电功率预测方法[J].[2024-09-09].DOI:10.12677/ORF.2024.141067.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 23
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值