👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
太阳能光伏发电系统输出受天文、地理、气象环境等多种因素的影响,系统输出是个非平稳的随
机过程,具有波动性、间歇性、周期性的特点,是一个不可控源,大规模分布式光伏电源接入大电网时,如果光伏电站装机容量占电力总装机容量的比例失调会对大电网造成冲击,影响大电网运行的安全性和稳定性[1]。研究表明,当光伏穿透功率超过总功率的 10%时,会显著拉大电网最大峰谷差率,对电力调峰造成困难,影响电能质量和电网正常、稳定的运行[2]。因此,结合天气信息预测未来 12 h内不同时间点的光伏系统的实时输出功率,及时制定合理的电站调度、管理方案,适时调节光伏并网比例,可以有效降低光伏并网时比例失调对大电网的冲击,进而实现安全并网,平稳运行和经济调度,获得更大的经济效益和社会效益。
目前,国内多采用 BP 神经网络算法或结合数值优化算法进行光伏发电出力短期预测,并取得了
一定的研究成果。
一、引言
随着全球对新能源需求的不断增加,光伏发电作为一种清洁、可再生的能源形式,其重要性日益凸显。然而,光伏发电系统的输出受到多种因素的影响,如天文、地理、气象环境等,具有波动性、间歇性和周期性的特点。因此,准确预测光伏发电的输出功率,对于制定合理的电站调度、管理方案,以及适时调节光伏并网比例,具有重要的现实意义。
二、研究背景
目前,国内多采用BP神经网络算法或结合数值优化算法进行光伏发电出力短期预测。BP神经网络作为一种多层前馈神经网络,具有强大的学习能力和非线性映射能力,能够逼近任意复杂的非线性函数。然而,传统的BP神经网络在训练过程中容易陷入局部最优解,导致预测精度受限。因此,本研究提出基于遗传算法优化BP神经网络的光伏出力预测方法,旨在提高预测精度。
三、研究方法
-
数据准备
根据光伏电站的历史气象数据与历史光伏发电输出功率,建立历史数据集。历史气象数据包括温度、湿度、风速和光照强度等。对历史气象数据进行归一化处理,得到处理后的光伏电站的历史气象数据。
-
BP神经网络模型建立
建立BP神经网络预测模型,输入为气象数据,输出为光伏发电输出功率。BP神经网络的层数一般设为3层,即输入层、隐藏层和输出层。隐藏层神经元个数一般为输入层神经元个数的2倍再加1。
-
遗传算法优化
利用多种群遗传算法优化BP神经网络预测模型中的权值和阈值。遗传算法通过模拟自然选择和遗传机制来搜索最优解,具有全局搜索能力强、不易陷入局部最优解的优点。优化过程中,根据每个个体的权值和阈值,计算其适应度函数值,即预测的光伏发电输出功率与历史数据集中历史光伏发电输出功率之间的均方根误差(RMSE)。通过选择、交叉和变异等操作,不断迭代更新种群,直到达到预设的遗传代数或满足终止条件。
-
模型预测
将优化后的BP神经网络预测模型应用于实际预测中。当输入当前时刻的气象数据时,模型能够输出当前时刻预测的光伏发电输出功率。
四、研究结果
通过对比实验,本研究发现基于遗传算法优化BP神经网络的光伏出力预测方法相比传统BP神经网络方法,预测精度显著提高。优化后的模型能够更好地适应光伏发电系统的非线性特性和波动性,提高预测的稳定性和准确性。
五、结论与展望
本研究提出了一种基于遗传算法优化BP神经网络的光伏出力预测方法,并通过实验验证了其有效性。该方法不仅提高了预测精度,还为光伏发电系统的调度和管理提供了有力的技术支持。未来,可以进一步探索其他优化算法与BP神经网络的结合,以及考虑更多影响光伏发电输出功率的因素,以进一步提高预测精度和适用性。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]姚仲敏,潘飞,沈玉会,吴金秋,于晓红.基于GA-BP和POS-BP神经网络的光伏电站出力短期预测[J].电力系统保护与控制,2015,43(20):83-89.
[2]刘娟,杨俊杰.基于改进的GA-BP神经网络光伏发电短期出力预测[J].上海电力学院学报,2018,34(01):9-13.