BFS(走迷宫)

文章介绍了一个使用宽度优先搜索(BFS)算法解决从迷宫左上角到右下角的最短路径问题。程序通过队列存储路径,记录每个位置的移动次数,并在找到目标位置时返回最少移动次数。如果需要记录路径,可以通过额外的数据结构存储路径信息。
摘要由CSDN通过智能技术生成

给定一个 n×mn×m 的二维整数数组,用来表示一个迷宫,数组中只包含 00 或 11,其中 00 表示可以走的路,11 表示不可通过的墙壁。

最初,有一个人位于左上角 (1,1)(1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角 (n,m)(n,m) 处,至少需要移动多少次。

数据保证 (1,1)(1,1) 处和 (n,m)(n,m) 处的数字为 00,且一定至少存在一条通路。

输入格式

第一行包含两个整数 nn 和 mm。

接下来 nn 行,每行包含 mm 个整数(00 或 11),表示完整的二维数组迷宫。

输出格式

输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤1001≤n,m≤100

输入样例:

5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

输出样例:

8

q[N*N]队列的作用是记录宽搜的路线,q[tt]负责记录,q[hh]负责一个个向前遍历。

g[N][N]负责记录题目所给的地图。

d[N][N]负责记录某个位置是否可以走,该位置是走的第几次位置,且记录结果。

由于是宽搜,每一排是一起走的,所以最快到达终点的路线即为最短路,不存在d[N][N]值被替代的情况。

#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;

const int N = 110;
typedef pair<int, int >PII;
int n, m;
int d[N][N];
int g[N][N];
PII q[N * N];

int bfs()
{
    int tt = 0, hh = 0;
    memset(d, -1, sizeof d);
    d[0][0] = 0;
    q[0] = { 0,0 };
    int dx[] = { -1,0,1,0 }, dy[] = { 0,-1,0,1 };    
    while (hh <= tt)
    {
        auto it = q[hh];
        hh++;
        for (int i = 0; i < 4; i++)
        {
            int x = it.first + dx[i], y = it.second + dy[i];
            if (x < n && x >= 0 && y < m && y >= 0 && d[x][y] == -1 && g[x][y] == 0)
            {
                d[x][y] = d[it.first][it.second] + 1;
                tt++;
                q[tt] = { x,y };
            }
        }
    }
    return d[n - 1][m - 1];
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            cin >> g[i][j];
        }
    }
    cout << bfs() << endl;
    return 0;
}

若要记录路线:

#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;

const int N = 110;
typedef pair<int, int >PII;
int n, m;
int d[N][N];
int g[N][N];
PII q[N * N], fff[N][N];

int bfs()
{
    int tt = 0, hh = 0;
    memset(d, -1, sizeof d);
    d[0][0] = 0;
    q[0] = { 0,0 };
    int dx[] = { -1,0,1,0 }, dy[] = { 0,-1,0,1 };    
    while (hh <= tt)
    {
        auto it = q[hh];
        hh++;
        for (int i = 0; i < 4; i++)
        {
            int x = it.first + dx[i], y = it.second + dy[i];
            if (x < n && x >= 0 && y < m && y >= 0 && d[x][y] == -1 && g[x][y] == 0)
            {
                d[x][y] = d[it.first][it.second] + 1;
                fff[x][y] = it;
                tt++;
                q[tt] = { x,y };
            }
        }
    }
    int x = n - 1, y = m - 1;
    while (x != 0 || y != 0)
    {
        cout << x << ' ' << y << endl;
        auto it = fff[x][y];
        x = it.first, y = it.second;
    }
    return d[n - 1][m - 1];
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            cin >> g[i][j];
        }
    }
    cout << bfs() << endl;
    return 0;
}

使用BFS算法走迷宫是一种逐层扩散的搜索方法。在迷宫中,我们从起点开始,将起点加入到队列中,并标记为已访问。然后,从队列中取出一个位置,并搜索它的相邻位置。将未访问过的相邻位置加入队列,并标记为已访问。重复这个过程,直到找到终点或者队列为空。如果找到了终点,则路径被找到。每个位置都可以记录它的前一个位置,以便在找到终点后可以回溯路径。 在使用BFS算法走迷宫时,我们可以按照如下步骤进行: 1. 创建一个队列,并将起点加入队列中。 2. 创建一个标记数组,用于记录每个位置是否已经被访问过。 3. 创建一个路径数组,用于记录每个位置的前一个位置。 4. 初始化标记数组和路径数组。 5. 进入循环,直到找到终点或者队列为空。 1) 从队列中取出一个位置。 2) 如果当前位置是终点,则路径被找到,可以停止搜索。 3) 否则,对当前位置的相邻位置进行搜索。 a) 如果相邻位置未被访问过,则将其加入队列,并标记为已访问。 b) 同时,更新路径数组,记录当前位置的前一个位置。 6. 如果找到了终点,可以通过回溯路径数组得到路径。 使用BFS算法走迷宫可以保证在找到终点时,路径是最短的。因为BFS是逐层扩散的,所以最先到达终点的路径肯定是最短路径。通过BFS算法,可以在给定的迷宫中寻找从起点到终点的最短路径。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [利用状态空间法解决走迷宫游戏问题 Maze.zip](https://download.csdn.net/download/NiZjiTouA/12308983)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [BFS算法之迷宫的最短路径](https://blog.csdn.net/qwexzvby/article/details/123894073)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值