深度学习实战笔记3循环神经网络实现

我们要训练一个基于循环神经网络的字符级语言模型,根据用户提供的文本的前缀生成后续文本。

import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
  1. 设置参数:

    • batch_size: 设置了每个小批量(batch)中的样本数量为32。
    • num_steps: 设置了序列长度为35。在文本数据中,这通常表示每个序列包含35个连续的词元(token)。
  2. 加载数据:

    • train_iter: 这是通过调用d2l.load_data_time_machine函数并传入batch_sizenum_steps参数得到的迭代器。这个迭代器用于在训练过程中提供批量数据。
    • vocab: 这是词汇表对象,它包含了数据集中所有词元的索引映射。

[独热编码]

每个词元都表示为一个数字索引, 将这些索引直接输入神经网络可能会使学习变得困难。 我们通常将每个词元表示为更具表现力的特征向量。 最简单的表示称为独热编码(one-hot encoding)

简言之,将每个索引映射为相互不同的单位向量: 假设词表中不同词元的数目为N(即len(vocab)), 词元索引的范围为0到N−1。 如果词元的索引是整数𝑖, 那么我们将创建一个长度为𝑁的全0向量, 并将第𝑖处的元素设置为1。 此向量是原始词元的一个独热向量。 索引为0和22的独热向量如下所示:

F.one_hot(torch.tensor([0, 2]), len(vocab))

我们每次采样的(小批量数据形状是二维张量: (批量大小,时间步数)。one_hot函数将这样一个小批量数据转换成三维张量, 张量的最后一个维度等于词表大小(len(vocab))。 我们经常转换输入的维度,以便获得形状为 (时间步数,批量大小,词表大小)的输出。 这将使我们能够更方便地通过最外层的维度, 一步一步地更新小批量数据的隐状态。

X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape

初始化模型参数

接下来,我们[初始化循环神经网络模型的模型参数]。 隐藏单元数num_hiddens是一个可调的超参数。 当训练语言模型时,输入和输出来自相同的词表。 因此,它们具有相同的维度,即词表的大小。

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01

    # 隐藏层参数
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = torch.zeros(num_hiddens, device=device)
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
  1. 参数定义:

    • vocab_size: 词汇表的大小,即不同词元的数量。
    • num_hiddens: 隐藏层中隐藏单元的数量。
    • device: 指定参数应该在哪个设备上(例如CPU或GPU)。
  2. 辅助函数:

    • normal(shape): 这是一个局部函数,用于初始化参数。它生成一个形状为 shape 的张量,其元素是从标准正态分布中随机采样的,然后乘以一个小的缩放因子(0.01)。这有助于在训练开始时避免梯度消失或爆炸的问题。
  3. 隐藏层参数:

    • W_xh: 输入到隐藏层的权重矩阵,其形状为 (num_inputs, num_hiddens)
    • W_hh: 隐藏层到隐藏层的权重矩阵,其形状为 (num_hiddens, num_hiddens)
    • b_h: 隐藏层的偏置项,其形状为 (num_hiddens,)
  4. 输出层参数:

    • W_hq: 隐藏层到输出层的权重矩阵,其形状为 (num_hiddens, num_outputs)
    • b_q: 输出层的偏置项,其形状为 (num_outputs,)
  5. 参数列表:

    • params: 将所有参数存储在一个列表中,以便在训练过程中一起处理。
  6. 梯度要求:

    • 通过调用 param.requires_grad_(True),确保每个参数在反向传播时会计算梯度。这对于训练过程中更新参数是必要的。

循环神经网络模型

为了定义循环神经网络模型, 我们首先需要[一个init_rnn_state函数在初始化时返回隐状态]。 这个函数的返回是一个张量,张量全用0填充, 形状为(批量大小,隐藏单元数)。 在后面的章节中我们将会遇到隐状态包含多个变量的情况, 而使用元组可以更容易地处理些。

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

[下面的rnn函数定义了如何在一个时间步内计算隐状态和输出。] 循环神经网络模型通过inputs最外层的维度实现循环, 以便逐时间步更新小批量数据的隐状态H。 此外,这里使用tanh函数作为激活函数。 如 :numref:sec_mlp所述, 当元素在实数上满足均匀分布时,tanh函数的平均值为0。

def rnn(inputs, state, params):
    # inputs的形状:(时间步数量,批量大小,词表大小)
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    # X的形状:(批量大小,词表大小)
    for X in inputs:
        H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
        Y = torch.mm(H, W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

定义了所有需要的函数之后,接下来我们[创建一个类来包装这些函数], 并存储从零开始实现的循环神经网络模型的参数。

class RNNModelScratch: #@save
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)
  1. 类定义:

    • class RNNModelScratch: 定义了一个名为 RNNModelScratch 的新类。
  2. 文档字符串:

    • """从零开始实现的循环神经网络模型""": 提供了类的简要描述。
  3. 构造函数 (__init__):

    • vocab_size: 词汇表的大小。
    • num_hiddens: 隐藏层中的单元数。
    • device: 指定模型应该在哪个设备上运行(CPU或GPU)。
    • get_params: 一个函数,用于初始化模型参数。
    • init_state: 一个函数,用于初始化隐藏状态。
    • forward_fn: 一个函数,定义了模型的前向传播逻辑。
  4. 初始化参数:

    • self.vocab_size, self.num_hiddens: 类的属性,存储词汇表大小和隐藏层单元数。
    • self.params: 通过调用 get_params 函数初始化模型参数。
    • self.init_state 和 self.forward_fn: 分别存储初始化状态和前向传播逻辑的函数。
  5. 调用方法 (__call__):

    • 这个方法允许类的实例像函数一样被调用。
    • X: 输入数据。
    • state: 初始隐藏状态。
    • F.one_hot(X.T, self.vocab_size): 使用 torch.nn.functional.one_hot 将输入数据 X 转换为one-hot编码格式。
    • type(torch.float32): 确保输入数据是浮点数格式。
    • self.forward_fn(X, state, self.params): 调用前向传播函数,传入one-hot编码的输入、初始状态和参数。
  6. 开始状态方法 (begin_state):

    • batch_size: 每个小批量中的样本数量。
    • device: 指定隐藏状态应该在哪个设备上。
    • 调用 self.init_state 函数来初始化隐藏状态。

让我们[检查输出是否具有正确的形状]。 例如,隐状态的维数是否保持不变。

num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape

预测

让我们[首先定义预测函数来生成prefix之后的新字符], 其中的prefix是一个用户提供的包含多个字符的字符串。 在循环遍历prefix中的开始字符时, 我们不断地将隐状态传递到下一个时间步,但是不生成任何输出。 这被称为预热(warm-up)期, 因为在此期间模型会自我更新(例如,更新隐状态), 但不会进行预测。 预热期结束后,隐状态的值通常比刚开始的初始值更适合预测, 从而预测字符并输出它们。

def predict_ch8(prefix, num_preds, net, vocab, device):  #@save
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])
  1. 函数签名:

    • prefix: 输入的前缀字符串,用于预热神经网络。
    • num_preds: 要生成的预测字符的数量。
    • net: 神经网络模型,它应该有一个 begin_state 方法来初始化状态,并且能够接收输入并生成输出。
    • vocab: 词汇表,它是一个包含字符到索引映射的对象。
    • device: 指定模型应该在哪个设备上运行(CPU或GPU)。
  2. 初始化状态:

    • state = net.begin_state(batch_size=1, device=device): 初始化网络的状态。
  3. 处理前缀:

    • outputs: 用于存储预测过程中生成的字符索引。
    • get_input: 一个 lambda 函数,用于将 outputs 中的最后一个字符转换为模型的输入格式。
    • for y in prefix[1:]:: 循环遍历前缀中的每个字符(除了第一个字符),并将它们添加到 outputs 列表中。
  4. 预热期:

    • 在这个循环中,模型接收前缀中的每个字符作为输入,并更新状态,但不生成新的预测字符。
  5. 预测新字符:

    • for _ in range(num_preds):: 循环 num_preds 次,每次生成一个新的预测字符。
    • y, state = net(get_input(), state): 使用模型和当前状态生成下一个字符的预测。
    • outputs.append(int(y.argmax(dim=1).reshape(1))): 将预测概率最高的字符索引添加到 outputs 列表中。
  6. 转换索引为字符:

    • 最后,将 outputs 列表中的索引转换回字符,并使用 join 方法将它们连接成一个字符串。
  7. 返回结果:

现在我们可以测试predict_ch8函数。 我们将前缀指定为time traveller , 并基于这个前缀生成10个后续字符。 鉴于我们还没有训练网络,它会生成荒谬的预测结果。

predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())

[梯度裁剪]

对于长度为𝑇的序列,我们在迭代中计算这𝑇个时间步上的梯度, 将会在反向传播过程中产生长度为O(T)的矩阵乘法链。 如 :numref:sec_numerical_stability所述, 当𝑇较大时,它可能导致数值不稳定, 例如可能导致梯度爆炸或梯度消失。 因此,循环神经网络模型往往需要额外的方式来支持稳定训练。

一般来说,当解决优化问题时,我们对模型参数采用更新步骤。 假定在向量形式的𝐱x中, 或者在小批量数据的负梯度𝐠方向上。 例如,使用𝜂>0作为学习率时,在一次迭代中, 我们将𝐱更新为x−ηg。 如果我们进一步假设目标函数𝑓表现良好, 即函数𝑓在常数𝐿下是利普希茨连续的(Lipschitz continuous)。 也就是说,对于任意x和y我们有:

|𝑓(𝐱)−𝑓(𝐲)|≤𝐿‖𝐱−𝐲‖

在这种情况下,我们可以安全地假设: 如果我们通过𝜂𝐠更新参数向量,则

|𝑓(𝐱)−𝑓(𝐱−𝜂𝐠)|≤𝐿𝜂‖𝐠‖

这意味着我们不会观察到超过𝐿𝜂‖𝐠||的变化。 这既是坏事也是好事。 坏的方面,它限制了取得进展的速度; 好的方面,它限制了事情变糟的程度,尤其当我们朝着错误的方向前进时。

有时梯度可能很大,从而优化算法可能无法收敛。 我们可以通过降低𝜂的学习率来解决这个问题。 但是如果我们很少得到大的梯度呢? 在这种情况下,这种做法似乎毫无道理。 一个流行的替代方案是通过将梯度𝐠投影回给定半径 (例如𝜃)的球来裁剪梯度𝐠。 如下式:

(

𝐠←min(1,𝜃‖𝐠‖)𝐠

)

通过这样做,我们知道梯度范数永远不会超过𝜃, 并且更新后的梯度完全与𝐠的原始方向对齐。 它还有一个值得拥有的副作用, 即限制任何给定的小批量数据(以及其中任何给定的样本)对参数向量的影响, 这赋予了模型一定程度的稳定性。 梯度裁剪提供了一个快速修复梯度爆炸的方法, 虽然它并不能完全解决问题,但它是众多有效的技术之一。

下面我们定义一个函数来裁剪模型的梯度, 模型是从零开始实现的模型或由高级API构建的模型。 我们在此计算了所有模型参数的梯度的范数。

def grad_clipping(net, theta):  #@save
    """裁剪梯度"""
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm
  1. 函数签名:

    • net: 要进行梯度裁剪的神经网络模型。它可以是一个 nn.Module 的实例或者是一个自定义模型。
    • theta: 阈值,用于确定是否需要裁剪梯度。
  2. 参数检查:

    • if isinstance(net, nn.Module): 检查 net 是否是 PyTorch 的 nn.Module 类的实例。如果是,函数将使用 net.parameters() 方法获取模型的参数。
    • else: 如果 net 不是 nn.Module 的实例,假设它是一个自定义模型,并且有一个名为 params 的属性,其中包含了模型的所有参数。
  3. 梯度计算:

    • norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params)): 计算所有参数梯度的平方和的平方根,得到梯度的 L2 范数。
  4. 梯度裁剪:

    • if norm > theta: 如果梯度的 L2 范数大于阈值 theta,则执行梯度裁剪。
    • for param in params: 遍历所有参数。
    • param.grad[:] *= theta / norm: 将每个参数的梯度乘以 theta / norm,实现裁剪。

训练

在训练模型之前,让我们[定义一个函数在一个迭代周期内训练模型]。 它与我们训练 :numref:sec_softmax_scratch模型的方式有三个不同之处。

  1. 序列数据的不同采样方法(随机采样和顺序分区)将导致隐状态初始化的差异。
  2. 我们在更新模型参数之前裁剪梯度。 这样的操作的目的是,即使训练过程中某个点上发生了梯度爆炸,也能保证模型不会发散。
  3. 我们用困惑度来评价模型。如 :numref:subsec_perplexity所述, 这样的度量确保了不同长度的序列具有可比性。

具体来说,当使用顺序分区时, 我们只在每个迭代周期的开始位置初始化隐状态。 由于下一个小批量数据中的第𝑖i个子序列样本 与当前第𝑖i个子序列样本相邻, 因此当前小批量数据最后一个样本的隐状态, 将用于初始化下一个小批量数据第一个样本的隐状态。 这样,存储在隐状态中的序列的历史信息 可以在一个迭代周期内流经相邻的子序列。 然而,在任何一点隐状态的计算, 都依赖于同一迭代周期中前面所有的小批量数据, 这使得梯度计算变得复杂。 为了降低计算量,在处理任何一个小批量数据之前, 我们先分离梯度,使得隐状态的梯度计算总是限制在一个小批量数据的时间步内。

当使用随机抽样时,因为每个样本都是在一个随机位置抽样的, 因此需要为每个迭代周期重新初始化隐状态。 与 :numref:sec_softmax_scratch中的 train_epoch_ch3函数相同, updater是更新模型参数的常用函数。 它既可以是从头开始实现的d2l.sgd函数, 也可以是深度学习框架中内置的优化函数。

#@save
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练网络一个迭代周期(定义见第8章)"""
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                # state对于nn.GRU是个张量
                state.detach_()
            else:
                # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
                for s in state:
                    s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(l * y.numel(), y.numel())
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
  1. 函数签名:

    • net: 神经网络模型。
    • train_iter: 训练数据的迭代器。
    • loss: 损失函数。
    • updater: 用于更新模型参数的优化器或自定义更新函数。
    • device: 指定模型应该在哪个设备上运行(CPU或GPU)。
    • use_random_iter: 是否使用随机迭代器。
  2. 初始化:

    • state: 初始化为 None,用于存储网络的状态。
    • timer: 使用 d2l.Timer() 初始化一个计时器,用于测量训练周期的时间。
    • metric: 使用 d2l.Accumulator(2) 初始化一个累加器,用于存储训练损失之和和处理的词元数量。
  3. 训练循环:

    • 循环遍历 train_iter 提供的数据批次。
  4. 状态初始化:

    • 如果是第一次迭代或使用随机抽样,则调用 net.begin_state 来初始化状态 state
  5. 梯度分离:

    • 如果 state 不是元组并且 net 是 nn.Module 的实例,则调用 state.detach_() 来分离梯度。
    • 对于 LSTM 或自定义模型,遍历 state 中的每个元素并分离梯度。
  6. 数据准备:

    • 将输入 X 和目标 Y 转换为适合模型的格式,并移动到指定的 device
  7. 前向传播:

    • 调用模型 __call__ 方法进行前向传播,获取预测 y_hat 和新的状态 state
  8. 计算损失:

    • 使用损失函数计算预测和目标之间的损失 l
  9. 反向传播和参数更新:

    • 如果 updater 是 torch.optim.Optimizer 的实例,则先清零梯度,然后执行反向传播,应用梯度裁剪,最后更新参数。
    • 如果 updater 是自定义更新函数,则直接执行反向传播和梯度裁剪,然后调用 updater 更新参数。
  10. 累加统计:

    • 使用 metric.add 累加损失和词元数量。
  11. 返回结果:

    • 返回平均损失的指数(即自然对数的负值),以及处理词元的速度。

这个函数是一个典型的训练循环,包括数据准备、模型预测、损失计算、梯度反向传播和参数更新等步骤。通过累加器和计时器,它还提供了训练损失和速度的统计信息。

[循环神经网络模型的训练函数既支持从零开始实现, 也可以使用高级API来实现。]

#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    """训练模型(定义见第8章)"""
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))
  1. 函数签名:

    • net: 神经网络模型。
    • train_iter: 训练数据的迭代器。
    • vocab: 词汇表,用于将词元转换为索引和将索引转换为词元。
    • lr: 学习率。
    • num_epochs: 训练的总轮数。
    • device: 指定模型应该在哪个设备上运行(CPU或GPU)。
    • use_random_iter: 是否使用随机迭代器。
  2. 初始化损失函数:

    • loss = nn.CrossEntropyLoss(): 使用交叉熵损失函数,适用于分类问题。
  3. 初始化动画器:

    • animator = d2l.Animator(...): 使用 d2l.Animator 类来绘制训练进度。
  4. 初始化优化器:

    • 如果 net 是 nn.Module 的实例,使用 torch.optim.SGD 作为优化器。
    • 否则,使用 d2l.sgd 作为自定义的随机梯度下降更新函数。
  5. 定义预测函数:

    • predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device): 定义一个 lambda 函数,用于调用 predict_ch8 函数进行预测。
  6. 训练循环:

    • 循环 num_epochs 轮。
  7. 训练每个epoch:

    • 调用 train_epoch_ch8 函数进行一个epoch的训练,并获取困惑度(perplexity)和词元处理速度。
  8. 周期性评估和可视化:

    • 每10个epoch,使用 predict 函数生成样本预测,并使用 animator.add 更新训练进度的可视化。
  9. 输出最终结果:

    • 训练完成后,打印最终的困惑度和词元处理速度,并生成两个样本预测。

这个函数结合了模型训练、评估、可视化和预测等多个方面,提供了一个完整的训练流程。通过周期性地生成预测样本,我们可以直观地看到模型在训练过程中的性能变化。

[现在,我们训练循环神经网络模型。] 因为我们在数据集中只使用了10000个词元, 所以模型需要更多的迭代周期来更好地收敛。

num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())
  1. 设置训练参数:

    • num_epochs: 设置训练的总轮数为 500。
    • lr: 设置学习率为 1。
  2. 调用训练函数:

    • train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu()): 使用这些参数调用 train_ch8 函数。
  3. 函数参数解释:

    • net: 需要训练的神经网络模型。
    • train_iter: 训练数据的迭代器,提供批量数据。
    • vocab: 词汇表,用于将词元转换为索引和将索引转换为词元。
    • lr: 学习率,用于控制优化器在每次迭代中的步长。
    • num_epochs: 训练的总轮数。
    • d2l.try_gpu(): 这是一个 d2l 库中的函数,用于尝试获取可用的GPU设备,如果GPU不可用则默认使用CPU。
  4. 注意事项:

    • 确保 nettrain_iter 和 vocab 已经被正确初始化和定义。
    • 学习率 lr 通常需要根据具体任务和模型进行调整,1 可能是一个较大的值,您可能需要尝试较小的学习率以观察训练效果。
    • d2l.try_gpu() 会返回一个设备对象,确保模型和数据在训练前被正确地移动到该设备上。
  5. 训练过程:

    • train_ch8 函数会进行多个epoch的训练,每个epoch都会遍历训练数据,并在每个epoch结束后评估模型的性能。
    • 训练过程中会打印出模型在特定前缀下的预测结果,以及训练的困惑度和速度。
  6. 训练结束后:

    • 函数会输出最终的困惑度和词元处理速度,并生成两个样本预测,展示模型的预测能力。

[最后,让我们检查一下使用随机抽样方法的结果。]

net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),
          use_random_iter=True)
  1. 创建模型实例:

    • net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params, init_rnn_state, rnn): 这行代码创建了 RNNModelScratch 类的一个实例。
    • len(vocab): 词汇表的大小,用作模型的输入和输出维度。
    • num_hiddens: 隐藏层的大小。
    • d2l.try_gpu(): 尝试获取GPU设备,如果GPU不可用则使用CPU。
    • get_params: 一个函数,用于初始化模型参数。
    • init_rnn_state: 一个函数,用于初始化RNN的状态。
    • rnn: 一个函数,定义了RNN的前向传播逻辑。
  2. 训练模型:

    • train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(), use_random_iter=True): 使用 train_ch8 函数训练模型。
    • train_iter: 训练数据的迭代器,提供批量数据。
    • vocab: 词汇表,用于处理数据集中的词元。
    • lr: 学习率。
    • num_epochs: 训练的总轮数。
    • d2l.try_gpu(): 确保模型在GPU上训练(如果可用)。
    • use_random_iter=True: 表示训练时使用随机迭代器,这有助于提高模型的泛化能力。
  3. 关键点:

    • 确保 vocabtrain_iterget_paramsinit_rnn_state 和 rnn 已经被正确定义和初始化。
    • num_hiddens 应该根据具体任务和模型架构来设置。
    • 学习率 lr 可能需要调整,以确保模型能够有效地收敛。
    • 使用 use_random_iter=True 可以在每个epoch中以随机顺序处理数据,这有助于防止模型对数据顺序的依赖。
  4. 训练过程:

    • train_ch8 函数会执行多个epoch的训练,每个epoch都会遍历整个训练数据集。
    • 在训练过程中,模型的状态会被初始化,然后通过前向传播、计算损失、反向传播和参数更新来优化模型。
  5. 训练结束后:

    • 训练完成后,您将得到一个训练好的模型,可以用于生成文本或进一步的评估。

  • 18
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值