深度学习实战笔记4循环神经网络的简洁实现

本节将展示如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

[定义模型]

num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

我们(使用张量来初始化隐状态),它的形状是(隐藏层数,批量大小,隐藏单元数)。

state = torch.zeros((1, batch_size, num_hiddens))
state.shape

[通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。] 需要强调的是,rnn_layer的“输出”(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。

X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape

 [我们为一个完整的循环神经网络模型定义了一个RNNModel]。 注意,rnn_layer只包含隐藏的循环层,我们还需要创建一个单独的输出层。

#@save
class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):#在 Python 中,**kwargs 是一个常用的参数,用于函数定义中,表示接收任意数量的关键字参数。这种参数通常用于函数定义中,使得函数可以接收除了已经明确定义的参数之外的额外参数。
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)

    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state

    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))
  1. 初始化 (__init__ 方法):

    • 接受 rnn_layer 参数,它是一个 RNN 层的实例,可以是 nn.RNNnn.LSTM 或 nn.GRU
    • vocab_size 是词汇表的大小,用于确定输出层的大小。
    • num_hiddens 是 RNN 层隐藏单元的数量。
    • 根据 RNN 层是否是双向的,设置 num_directions
    • 根据 num_directions 和 num_hiddens,初始化一个线性层 self.linear,用于将 RNN 的输出映射到词汇表大小的输出。
  2. 前向传播 (forward 方法):

    • 输入 inputs 是当前的输入序列,state 是 RNN 的隐藏状态。
    • 使用 F.one_hot 将输入序列转换为 one-hot 编码。
    • 将 one-hot 编码的输入转换为浮点数。
    • 将输入和状态传递给 RNN 层,并获取 RNN 的输出 Y 和新的隐藏状态 state
    • 将 RNN 的输出 Y 重塑为适合全连接层的形状。
    • 通过全连接层 self.linear 计算输出。
  3. 初始化隐藏状态 (begin_state 方法):

    • 根据设备 device 和批量大小 batch_size 初始化隐藏状态。
    • 如果 RNN 是 LSTM,隐藏状态是一个元组,包含两个张量,分别代表隐藏状态和单元状态。
    • 如果 RNN 是 GRU 或其他类型的 RNN,隐藏状态是一个单一的张量。

这个类可以用于构建一个 RNN 模型,用于序列生成任务,如语言模型或机器翻译。它可以根据输入序列生成下一个词的概率分布。

训练与预测

在训练模型之前,让我们[基于一个具有随机权重的模型进行预测]。

device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)#将模型移动到之前获取的设备(GPU 或 CPU)上。这一步是必要的,因为 PyTorch 模型和数据需要在同一设备上才能进行计算。
d2l.predict_ch8('time traveller', 10, net, vocab, device)

很明显,这种模型根本不能输出好的结果。 接下来,我们使用超参数调用train_ch8,并且[使用高级API训练模型]。

num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)

与上一节相比,由于深度学习框架的高级API对代码进行了更多的优化, 该模型在较短的时间内达到了较低的困惑度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值