2025年小白入行计算机视觉,超详细学习路线!

入门计算机视觉(Computer Vision, CV)是一个系统化的过程,需要结合数学基础、编程技能、算法理解和项目实践。以下是详细的学习路径和就业方向建议,分阶段梳理:

一、就业方向概览

算法工程师(核心方向)

1.负责CV算法研发、模型优化(如目标检测、图像分割、人脸识别等)。

2.需熟悉深度学习框架(PyTorch/TensorFlow)和模型部署(ONNX、TensorRT)。

AI产品经理

1.负责CV产品需求分析、落地场景设计(如安防、医疗影像)。

2.需懂技术原理,能沟通算法团队与业务部门。

嵌入式视觉工程师

1.开发边缘设备视觉应用(如无人机、自动驾驶车载摄像头)。

2.需掌握C++、嵌入式优化(OpenVINO、NPU加速)。

科研方向

1.攻读硕士/博士,研究方向如3D重建、多模态学习(视觉+语言)。

二、分阶段学习路径

阶段1:基础铺垫(1-3个月)

数学基础

线性代数:矩阵运算、特征值分解(用于图像变换、PCA)。

概率与统计:贝叶斯定理、高斯分布(用于目标跟踪、生成模型)。

微积分:梯度下降、优化算法基础。

编程基础

Python(80%的CV代码用Python):NumPy(张量操作)、Pandas(数据处理)、Matplotlib(可视化)。

基础算法:排序、搜索、时间复杂度(面试常考)。

工具入门

Git/GitHub:代码版本管理。

Linux基础:命令行操作(CV项目多在Linux环境部署)。

阶段2:计算机视觉核心(3-6个月)

传统图像处理

OpenCV库:图像滤波(高斯模糊)、边缘检测(Canny)、特征提取(SIFT/SURF)。

经典算法:霍夫变换(直线检测)、模板匹配、光流法(运动估计)。

机器学习基础

Scikit-learn:SVM(分类)、K-Means(聚类)、PCA(降维)。

实战:用传统方法实现手写数字识别(MNIST)。

深度学习入门

神经网络基础:全连接层、反向传播、激活函数(ReLU)。

框架:PyTorch(推荐新手)/TensorFlow,学会张量操作和自动求导。

【给大家推荐一位b站up大大,她的账号里学习内容很详细】

名字:coward咿呀咿

也可以点击该链接跳转到学习页面

https://space.bilibili.com/3537111475030707/upload/video

阶段3:深度学习与CV进阶(6-12个月)

经典模型与任务

图像分类:AlexNet、ResNet、Vision Transformer(ViT)。

目标检测:YOLO系列、Faster R-CNN(掌握COCO数据集评估指标mAP)。

图像分割:U-Net(医疗影像)、Mask R-CNN。

生成模型:GAN(风格迁移)、Diffusion模型(近期热门)。

实战项目

Kaggle竞赛:如“CIFAR-10分类”、“RSNA肺炎检测”。

开源项目复现:GitHub上找Star量高的CV项目(如MMDetection)。

阶段4:专项深入与工程化(1年以上)

模型优化

轻量化:MobileNet、EfficientNet、模型剪枝/量化。

部署:TensorRT加速、ONNX格式转换、Flask/Django搭建API。

领域专项

自动驾驶:车道线检测、BEV(Bird's Eye View)感知。

医疗影像:CT/MRI分割(需学DICOM格式)。

AR/VR:SLAM(如ORB-SLAM)、3D重建(NeRF)。

教程视频:

【全198集】这才是科研人该学的计算机视觉教程!一口气学完Python、OpenCV、深度学习、PyTorch框架、卷积神经网络、目标检测、图像分割,通俗易懂!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值