入门计算机视觉(Computer Vision, CV)是一个系统化的过程,需要结合数学基础、编程技能、算法理解和项目实践。以下是详细的学习路径和就业方向建议,分阶段梳理:
一、就业方向概览
算法工程师(核心方向)
1.负责CV算法研发、模型优化(如目标检测、图像分割、人脸识别等)。
2.需熟悉深度学习框架(PyTorch/TensorFlow)和模型部署(ONNX、TensorRT)。
AI产品经理
1.负责CV产品需求分析、落地场景设计(如安防、医疗影像)。
2.需懂技术原理,能沟通算法团队与业务部门。
嵌入式视觉工程师
1.开发边缘设备视觉应用(如无人机、自动驾驶车载摄像头)。
2.需掌握C++、嵌入式优化(OpenVINO、NPU加速)。
科研方向
1.攻读硕士/博士,研究方向如3D重建、多模态学习(视觉+语言)。
二、分阶段学习路径
阶段1:基础铺垫(1-3个月)
数学基础
线性代数:矩阵运算、特征值分解(用于图像变换、PCA)。
概率与统计:贝叶斯定理、高斯分布(用于目标跟踪、生成模型)。
微积分:梯度下降、优化算法基础。
编程基础
Python(80%的CV代码用Python):NumPy(张量操作)、Pandas(数据处理)、Matplotlib(可视化)。
基础算法:排序、搜索、时间复杂度(面试常考)。
工具入门
Git/GitHub:代码版本管理。
Linux基础:命令行操作(CV项目多在Linux环境部署)。
阶段2:计算机视觉核心(3-6个月)
传统图像处理
OpenCV库:图像滤波(高斯模糊)、边缘检测(Canny)、特征提取(SIFT/SURF)。
经典算法:霍夫变换(直线检测)、模板匹配、光流法(运动估计)。
机器学习基础
Scikit-learn:SVM(分类)、K-Means(聚类)、PCA(降维)。
实战:用传统方法实现手写数字识别(MNIST)。
深度学习入门
神经网络基础:全连接层、反向传播、激活函数(ReLU)。
框架:PyTorch(推荐新手)/TensorFlow,学会张量操作和自动求导。
【给大家推荐一位b站up大大,她的账号里学习内容很详细】
名字:coward咿呀咿
也可以点击该链接跳转到学习页面
https://space.bilibili.com/3537111475030707/upload/video
阶段3:深度学习与CV进阶(6-12个月)
经典模型与任务
图像分类:AlexNet、ResNet、Vision Transformer(ViT)。
目标检测:YOLO系列、Faster R-CNN(掌握COCO数据集评估指标mAP)。
图像分割:U-Net(医疗影像)、Mask R-CNN。
生成模型:GAN(风格迁移)、Diffusion模型(近期热门)。
实战项目
Kaggle竞赛:如“CIFAR-10分类”、“RSNA肺炎检测”。
开源项目复现:GitHub上找Star量高的CV项目(如MMDetection)。
阶段4:专项深入与工程化(1年以上)
模型优化
轻量化:MobileNet、EfficientNet、模型剪枝/量化。
部署:TensorRT加速、ONNX格式转换、Flask/Django搭建API。
领域专项
自动驾驶:车道线检测、BEV(Bird's Eye View)感知。
医疗影像:CT/MRI分割(需学DICOM格式)。
AR/VR:SLAM(如ORB-SLAM)、3D重建(NeRF)。
教程视频:
【全198集】这才是科研人该学的计算机视觉教程!一口气学完Python、OpenCV、深度学习、PyTorch框架、卷积神经网络、目标检测、图像分割,通俗易懂!