【吴恩达GANs】【C1W4】Conditional & Controllabel Generation

文章探讨了生成对抗网络(GANS)中的条件生成概念,允许指定类别的生成。它提到条件生成需要标注数据集,并详细解释了生成器和鉴别器的输入。文章还讨论了可控生成、Z空间中的向量代数问题,如特征相关性和Z空间纠缠,以及如何使用分类器梯度来改进特征控制。最后,提出了解纠缠作为解决Z空间纠缠的方法。
摘要由CSDN通过智能技术生成

视频链接:吴恩达DeepLearning.ai之生成对抗网络(GANS)专业化〔Andrew Ng〕

4-2 Conditional generation intuition

  1. Unconditional Generation:从随机类中得到输出,每次输出的类也都是随机的,无法得到指定输出类。
  2. Conditional Generation:允许生成指定的类。如下图,就像自动售货机
    在这里插入图片描述
总结:

Conditional Generation需要标注的数据集,可以从选择的类中生成实例
在这里插入图片描述

4-3 conditional generation inputs

  1. Generator Input:Noise vector(指定类中的随机实例)+one-hot vector(指定类,也叫class vector)
    在这里插入图片描述
  2. Discriminator Input: feature(图片等) + label(描述该feature的标注信息)
    • 若feature和label可以对应,则Discriminator输出的打分高
      在这里插入图片描述

    • 若feature和label不对应,则Discriminator输出的打分低
      在这里插入图片描述
      以上图为例,其中Discriminator的输入实际为image+one-hot matrix(注意这里为了和image channel对应,是matrix而不是vector),而该种image又有3通道,即Discriminator的输入如下图所示:
      在这里插入图片描述

总结:
  1. 类信息以one-hot vector形式传给generator,以one-hot matrix形式传给discriminator
  2. vector长度 = matrix个数 = 类数量

4-4 Controllable generation

  1. 调整输入Generator的noise可以得到特征不同的输出
    在这里插入图片描述
    在这里插入图片描述
  2. Controllable Generation和Conditional Generation的对比:
    在这里插入图片描述

4-5 Vector algebra in the z-space

z1和z2是z-space中的两个维度,v1=[5,10],v2=[4,2] 是z-space中的两个向量,g(v1)和g(v2)生成的两张图像如下。如果想得到这两张图像的中间值(通过这些中间值可以看到这两张图像相互转换的中间过程),可以在z1和z2维度中对v1和v2进行中间插值
在这里插入图片描述
那么一旦我们找到了从一个特征到另一个特征的矢量d,就可以从一张图像g(v1)生成另一张g(v1+d)
在这里插入图片描述

4-6 Challenges with controllable generator

  1. Feature correlation:有的特征和其他特征是有相关关系的,比如给不能给女生加上胡子,而是需要将其性别调整为男性之后再添加胡子
    在这里插入图片描述
  2. Z-space Entanglement
    由Feature correlation导致的Z-space中的特征纠缠问题,即若想改变输出的某一特征,不能只改变noise vector中的一项,即需要改变noise vector中的多项,而这又会导致输出的其他特征发生改变。特别是当噪声 z 维度不够时,就更容易发生z-space entanglement。
    在这里插入图片描述
总结:

当我们试图去改变一个特征,其他关联特征也会被改变。当z维度不够时会发生Z-space entanglement问题,使得特征控制问题变得困难。

4-7 Classifier gradients

如下图所示,g(noise)生成一个图像后,用pre-trained classifier来识别该图像内容的特征(在这里是图像中的人是否佩戴了太阳镜),classifier返回的识别结果再用来修改noise vector z的值,而不用修改Generator的权重值。其中每一张被归类为“没有佩戴太阳镜”的图像都会受到梯度惩罚,重复以上过程直至Generator生成的图像中的人都是佩戴了太阳镜
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

总结:

classifier可以找到改变某一特征的方向,即4-8中从v1到v2的方向矢量d。这一过程中只更新noise vector的值。

4-8 Disentanglement

解决Z-space Entanglement需要改变一个向量的同时不改变其他向量。

解决方法一:将类信息嵌入到噪声向量中。但是这种方法会对连续类生成有问题
在这里插入图片描述
解决方法二:不给任何实例加标注,而是在损失函数是中加入一个正则化项,来鼓励模型将 噪声向量中的每个索引 与 输出中的不同特征 相关联。而这一正则化项可以来自classifier gradients或者其他无监督方法等。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值