Stable Diffusion基础:ControlNet之画风融合

今天继续给大家分享 Stable Diffusiion 的基础能力:ControlNet 之画风融合。

基本介绍

首先我们来明确一个概念:什么是画风?

我通过AI大模型获取了一个答案,自认为还比较容易理解:画风是指绘画的风格,包括作者对人物、布景等的绘画手法,线条处理,色彩、色调等其他方面的处理手法,以及动画创作者的作画风格等。

本文用到的 ControlNet 类型是Shuffle,它的本意是洗牌、打散。Shuffle的预处理器会把图片中的元素扭曲组合,然后Shuffle模型会使用这些信息,结合其它SD控制参数一起生成图片。

为了更直观的感受这个处理方法,我这里用Anything模型参考“蒙娜丽莎”生成了一张图片:

从上面这个例子,我们可以看到:生成图片参考了原图的色彩、色调和一些光影效果,以及部分元素(背景中高低起伏的地面),甚至人物的发型、姿势等特征,同时图片也受到大模型的很多约束,线条的处理,人物的面部、头发、服饰等都是Anything的二次元风格。

绘制的图片既有参考图的部分风格,又有大模型的部分风格,两种风格出现在同一张图中,融合到了一起,所以我这里称之为画风融合。

如果你感觉这个说法还是有点单薄,下面会有更多的示例。不过在此之前,我想先演示下 Shuffle 的用法,以便让大家能够更快的开始自己的创作。

使用方法

选择一个你喜欢的大模型,通过提示词描述你想要的画面,通过反向提示词做一些画面约束。

  • 随便选择一个采样器,这里选择一个比较新的 DPM++ 2M SDE Karras,速度和效果都比较好,采样步数在20-40。
  • 设置你想要生成图片的尺寸,数值越大生成越慢,一般不要超过1024;宽高比常见的有1:1、2:3、3:4、9:16等,宽高比过于悬殊,画面结构可能会崩坏,这里宽高采用了2:3的比例。

在ControlNet区域:

  • 选择一个Unit,一般就是第一个;
  • 上传一张参考图片;
  • 勾选“启用”;勾选“完美匹配像素”,让预处理器自动识别参考图的分辨率;勾选“允许预览”,方便查看 Shuffle 预处理的结果。

  • Control Type 这里勾选“Shuffle”;
  • Shuffle的预处理器和模型都只有一种,勾选“Shuffle”后会自动加载;
  • 其它参数先使用默认值就可以。

然后就可以去生成图片了。

绘图示例

下面是使用 Shuffle 绘制图片的一些示例。为了更全面的感受 Shuffle 的效果,我选择了多种风格的参考图,大模型使用了 AnythingV5 和 realisticVisionV51,它们分别是二次元模型和真实模型。

下面3张图的顺序都是:参考图、AnythingV5、realisticVisionV51。

如果你有兴趣,可以下载这些图片,然后在 Stable Diffusion WebUI 中查看图片生成参数,下载方法请查看文章最后部分。

赛博朋克

文生图,赛博朋克风格,Shuffle ControlNet。参考图中的光影效果深刻影响了生成的图片。

古风仕女

文生图,女子,Shuffle ControlNet。除了色彩很像,看这两个小眼神,好像也受到了参考图的很大影响。在真实模型生成的图片中还出现了参考图中的一些花花草草。

文生图,男子,Shuffle ControlNet。参考图是女子,也不影响生成男人。

水墨画

文生图,女孩,Shuffle ControlNet。

文生图,山水画,Shuffle ControlNet。

小说推文插画

文生图,女孩,Shuffle ControlNet。生成图片融合了一种很干净利索的感觉。

工笔画风

文生图,女孩,Shuffle ControlNet。这个五颜六色的组合还挺搭的,没有庸俗感。

蒙娜丽莎(图生图约束)

图生图,蒙娜丽莎,Shuffle ControlNet。

使用图生图,较小的重绘幅度,约束画面的结构,但是色彩、色调都会使用参考图的。

二次元(线稿约束)

文生图,女孩,Shuffle ControlNet + Lineart ControlNet。

这里使用了 Lineart ControlNet 来约束画面,使得整体画面结构不变,只改变色彩和细节。

Lineart的参考图片是下面这张:

下面这几张是添加 Shuffle 生成的图片:

总结

从出图示例我们可以看到,Shuffle 提供的画风融合能力主要在色彩、色调,以及参考图中部分元素和效果;生成图片的线条处理、人物的绘画手法还是主要由大模型来控制的。

资源下载

本文使用的模型、插件,生成的图片,都已经上传到了我整理的SD绘画资源中,后续也会持续更新,如有需要,添加下方,即可获取下载地址。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

### 使用 Stable Diffusion 生成动漫风格人物头像 为了利用 Stable Diffusion 创建具有独特魅力的二次元角色图像,可以遵循特定的方法来优化这一过程。这不仅涉及选择合适的预训练模型版本,还需要配置一些辅助工具以增强效果。 #### 准备工作环境 安装并设置好支持 ControlNetStable Diffusion WebUI 版本是第一步。ControlNet 是一种能够指导扩散模型根据输入条件(比如边缘检测图)生成更精确图像的强大插件[^1]。 #### 寻找适合的基础模型 对于想要获得高质量的动漫化转换结果而言,挑选一个经过良好调优、专门针对亚洲面孔或其他特征进行了微调的大规模预训练权重文件至关重要。可以从 Hugging Face 上找到多个由社区贡献者分享的不同变体模型,例如 `stable-diffusion-v-1-4-original` 这样的官方发布版或是其他个人开发者基于此开发出来的改进型版本[^3]。 #### 构建提示词 (Prompt Engineering) 构建有效的文本描述语句可以帮助引导算法创造出更加贴近预期的效果。尝试加入具体的外貌细节说明,如发型颜色、眼睛形状等;也可以指定艺术风格偏好,像是“赛璐珞渲染”、“水彩画风”,甚至是模仿某位知名漫画家的手法[^2]。 ```plaintext A beautiful anime portrait of a young woman, long black hair flowing in the wind, large expressive eyes with sparkles, wearing traditional Japanese school uniform, painted in cel-shading style. ``` #### 调整参数设定 除了精心设计的文字指令之外,在实际运行过程中合理调整超参同样重要。适当降低 CFG Scale 数值可以让输出显得不那么刻板而富有变化感;增加采样步数有助于提升最终作品的质量和清晰度。 #### 后处理与修饰 最后一步是对初步得到的结果做进一步润色。借助 Photoshop 或 GIMP 等图形编辑软件去除可能存在的瑕疵部分,亦可考虑应用滤镜特效增添氛围感。 通过上述流程,便能较为顺利地运用 Stable Diffusion 及其周边生态完成从真人照片到理想中二次元形象转变的任务了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值