Caffe调参经验

本文介绍了在Caffe中训练模型的步骤,包括数据清洗、模型选择、训练初始化和调参。强调了数据清洗的重要性,如训练集与测试集同分布、样本均衡性。在模型选择中,建议根据问题复杂度匹配模型复杂度。训练初始化时,启用在线数据增强,并给出了初始学习率和权重衰减的建议。调参部分提到了学习速率调整策略以及过拟合的处理方法,如增加dropout层和调整weight_decay。
摘要由CSDN通过智能技术生成

假设现在你要在一批数据集上训练出一个caffe模型, 你要怎么做?训练中遇到的问题,要如何解决?仔细看下去吧!

第一步: 数据清洗

训练集和测试集是否同分布?

用cross validation去做验证。 如果CV训练结果OK, 但trainset上训练的模型,在testset上很差,则基本判定trainset和testset分布不一致, 数据需要继续清洗。

样本分布均衡吗?

深度学习对不均衡很敏感,这点不如以前的机器学习方法。处理不均衡的方法有一下几种
* 对样本数少的类别做上菜样。 比如直接复制,或者做一些旋转,形变,光照变换,翻转等,高级点的方法还有把样本变换到某个空间里去,空间内两个样本点连线的中点映射回来新样本。
* 对样本数比较多的类别做下采样。这个没什么好解释的的了,直接抽点即可。 高级点的可以考虑下保持原本的样本分布。
* 把样本数目较多的类别拆分成N个子集合,每个子集合和其他类别构成一个均衡的训练集,单独训练出一个分类器,最后多个分类器构成ensemble 分类器。
* 对样本数目较多的类别做聚类,用聚类中心参与训练
* 设计分类器支持不均衡的样本训练,比如xgboost,这个比较高端了

第二步:模型选择

这里主要考虑模型的复杂度和问题复杂读的匹配。

简单模型 复杂模型
简单问题 适合
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值