终于讲清楚了!AI模型部署攻略手册全方位解析

导读

此前,我们已经介绍了一些经典的CNN模型,CNN模型涨点策略,预训练和微调,损失函数,训练和推理,模型压缩和加速,今天就来聊聊AI模型的部署的那些事儿。

你可能听说过AI模型,但你知道怎么把它们用到实际中去吗?这就是AI模型部署的魔力所在了。

简单来说,AI模型部署就是把我们训练好的AI模型放到实际环境中去运行的过程。 就像你烤了个蛋糕,AI模型部署就是把这个蛋糕从烤箱拿出来,放到盘子里,让大家都能尝到。

那我们为什么要费这么大劲去部署AI模型呢?

原因很简单,我们做AI模型不就是为了用嘛!部署就是让这些模型在真实世界里大显身手的关键一步。

想象一下,你训练了一个识别图片中猫和狗的模型,你不把它放到手机上,大家怎么能随时拿出手机来玩这个“找不同”的游戏呢?所以,部署就是让AI模型从实验室走向生活的桥梁。

下面,咱们来扒一扒部署前的准备和部署的具体流程。

部署前的准备

1、 硬件环境选择

在AI模型部署前,选择合适的硬件环境是至关重要的。硬件的选择直接影响模型的运行效率和成本效益。以下是硬件选择的一些关键考虑因素:

- 计算能力: AI模型,尤其是深度学习模型,需要强大的计算能力。GPU因其并行处理能力而成为首选,能够显著加速模型的推理过程。根据模型的复杂度和业务需求,选择合适的GPU型号,如NVIDIA的Tesla系列或GeForce RTX系列。对于更大规模的模型,可能需要多GPU甚至GPU集群的支持。

- 内存与存储: 大模型通常需要大量的内存来存储模型参数和中间数据,以及足够的存储空间来保存训练数据和模型文件。因此,选择具有足够内存和高速存储设备(如SSD)的硬件是必要的。

- 网络连接: 对于需要实时响应的AI服务,网络连接速度也是一个重要因素。确保服务器有高速的网络接口,以减少数据传输延迟。

- 扩展性与兼容性: 随着业务的发展,可能需要对硬件进行扩展或升级。选择具有良好扩展性和兼容性的硬件平台,可以在未来节省成本和时间。

2、 软件环境搭建

软件环境的搭建同样对AI模型的部署至关重要。以下是软件环境搭建的一些关键步骤:

- 操作系统: 选择一个稳定且广泛支持的操作系统,如Linux或Windows Server,确保系统兼容性和稳定性。

- 编程语言: Python因其灵活性和丰富的库支持而成为AI领域的首选编程语言。确保安装了正确版本的Python以及相关的开发环境。

- 深度学习框架: 根据模型的训练框架,安装相应的深度学习框架,如TensorFlow、PyTorch等。这些框架提供了模型部署所需的工具和库。

- 依赖库: 安装模型运行所需的所有依赖库,包括数学库、图像处理库等。这些库通常可以通过包管理工具(如pip或conda)进行安装。

- 容器化技术: 考虑使用Docker等容器化技术,以确保模型在一个一致的环境中运行,减少因环境差异导致的问题。

- 云服务平台: 如果选择云部署,需要注册云服务提供商,并创建相应的服务实例。云服务平台提供了便捷的部署服务和强大的计算资源。

通过精心准备硬件和软件环境,可以为AI模型的顺利部署打下坚实的基础。这不仅有助于提高模型的运行效率,还可以降低后期的维护成本。

模型部署流程

1、 模型评估与选择

在AI模型部署之前,模型的评估与选择是至关重要的一步。这一阶段的目标是确定最适合业务需求的模型,并评估其在实际部署环境中的表现。

  • 评估指标:常用的评估指标包括准确率、召回率、F1分数等,这些指标能够量化模型的性能。例如,一个图像识别模型在测试集上的准确率达到90%,这表明模型能够正确识别出90%的图像。

  • 模型选择:根据业务需求和评估结果,选择最适合的模型。例如,如果业务对响应时间要求极高,那么可能会选择一个轻量级的模型,即使其准确率略低于更复杂的模型。

  • 实际测试:在模拟的生产环境中对模型进行测试,以确保其在实际部署时能够满足性能要求。例如,通过A/B测试比较不同模型版本的表现,选择最优版本进行部署。

2、获取模型

在AI模型部署的旅程中, 这通常涉及从模型训练团队那里获取训练好的模型权重文件和结构文件。这些文件包含了模型训练后的所有参数和结构信息,是部署过程中不可或缺的资产。

  • 模型格式: 模型文件通常以HDF5、PB、ONNX等格式提供,这些格式能够确保模型在不同平台和框架间的兼容性和可移植性。

  • 版本控制: 在获取模型时,应确保使用的是正确的模型版本,并且该版本经过了充分的测试和验证。使用版本控制系统(如Git)可以帮助管理模型的不同版本,并追踪每次变更的历史记录。

3、模型转换与优化

选好模型后,下一步就是模型转换和优化。模型转换是将模型从训练框架转换为适合部署的格式,而模型优化则是针对特定硬件平台进行的调整,以提高推理速度和降低资源消耗。

有时候,我们训练模型用的框架和部署时用的框架不一样,这就需要转换模型格式。就像你在国外买的电器,回国得换个插头才能用。

  • 模型导出:将模型从训练框架中导出为标准格式,如ONNX或TensorFlow的SavedModel格式。例如,一个在PyTorch中训练的模型可以导出为ONNX格式,以便在其他平台或框架中使用。

  • 模型转换:将模型转换为特定硬件平台支持的格式。例如,使用TensorRT将TensorFlow模型转换为优化的TensorRT模型,以提高在NVIDIA GPU上的推理效率。

  • 兼容性测试:在转换后的模型部署到目标硬件之前,进行兼容性测试以确保模型能够正确加载和执行。例如,测试转换后的模型在不同版本的操作系统和硬件上的表现。

转换完模型,我们还得优化它,让它跑得更快,更省资源。这就像是给你的车做保养,让它跑得更顺。

  • 量化技术: 模型量化是将模型的权重和激活从浮点数转换为整数的过程,这可以减少模型大小并加速推理,同时在大多数情况下对精度的影响很小。

  • 剪枝和蒸馏: 模型剪枝去除不重要的权重,而知识蒸馏则将大型复杂模型的知识转移到小型模型中。这些技术可以减少模型的计算需求,使其更适合在资源受限的环境中运行。

4、 集成API和服务

将模型封装为API服务是部署过程中的关键一步,它使得模型可以通过网络请求被客户端调用。

  • 模型集成:将模型集成到应用程序中,并确保模型能够接收输入数据并返回预测结果。例如,将一个机器学习模型集成到一个Web应用中,使其能够处理用户上传的图片并返回分类结果。

  • API开发:开发API接口,使外部系统能够与模型交互。例如,创建一个RESTful API,允许客户端发送HTTP请求到模型,并接收JSON格式的响应。

  • 安全性考虑:在API开发中考虑安全性,如使用HTTPS、认证和授权机制来保护模型和数据。例如,通过OAuth 2.0实现API的认证,确保只有授权用户才能访问模型。

  • 性能优化:对API进行性能优化,以确保模型能够快速响应请求。例如,使用缓存机制减少模型的重复计算,或者通过负载均衡提高API的吞吐量。

5、测试与验证

5.1 功能测试

功能测试是确保AI模型在部署后能够按照预期执行其功能的关键步骤。这一阶段的测试主要关注模型的输出是否与训练时的表现一致,以及是否能够正确处理各种输入数据。

- 测试用例设计: 设计全面的测试用例,覆盖所有可能的输入情况,包括正常情况和边界情况。例如,在图像识别模型中,测试用例应包括各种光照条件、角度和遮挡情况的图像。

- 自动化测试: 利用自动化测试框架,如Selenium或PyTest,来执行测试用例,并自动验证模型输出的正确性。

- 监控与日志: 在功能测试过程中,监控模型的行为并记录详细的日志,以便在测试失败时快速定位问题。

- 用户验收测试: 在实际用户环境中进行验收测试,确保模型满足业务需求和用户体验。

5.2 性能测试

性能测试的目的是评估AI模型在实际生产环境中的性能,包括推理速度、吞吐量和资源消耗等指标。

- 压力测试: 使用工具如JMeter对模型进行压力测试,模拟高并发请求,评估模型在极限负载下的表现。

- 资源监控: 监控模型运行时的CPU、内存和GPU使用情况,确保模型在资源消耗方面符合预期。

- 性能基准: 建立性能基准,将模型的性能与行业标准或竞争对手进行比较,找出潜在的优化空间。

- 优化与调整: 根据性能测试的结果,对模型进行优化和调整,如模型剪枝、量化和硬件加速等。

5.3 安全性测试

安全性测试是确保AI模型在面对恶意攻击时的稳定性和安全性的重要步骤。

- 对抗性攻击测试: 模拟对抗性攻击,如投毒攻击、模型逆向工程等,评估模型的鲁棒性和安全性。

- 数据隐私保护: 确保模型在处理敏感数据时符合数据保护法规,如GDPR或CCPA。

- 模型解释性: 提高模型的可解释性,以便在模型做出决策时能够提供合理的解释,增强用户对模型的信任。

- 安全审计: 定期进行安全审计,检查模型的代码和架构是否存在安全漏洞,并及时修复。

通过上述测试与验证步骤,可以确保AI模型在部署后不仅能够正常工作,而且具有良好的性能和安全性,为用户提供可靠的服务。

需要的工具和平台

1、 常用AI框架

在AI的世界里,框架就像做菜的锅,没有它可不行。咱们来瞅瞅那些常用的AI框架。

  • TensorFlow: 这是谷歌爸爸的亲儿子,功能强大,社区支持也好。它就像瑞士军刀,啥都能干,从模型训练到部署,一条龙服务。

  • PyTorch: Facebook出品,以其动态计算图和易用性著称。它就像你的贴心小棉袄,用起来特别顺手,特别适合研究和开发。

  • Caffe & Caffe2: 这两个是深度学习的老兵了,特别适合图像处理任务。它们就像你的老朋友,虽然不新潮,但特别可靠。

  • PaddlePaddle: 这是百度家的,国内的小伙伴用得比较多。它就像你的老乡,交流起来没障碍,特别适合中文用户。

这些框架各有千秋,选择哪个,得看你的需求和喜好。就像选手机,有人喜欢苹果,有人喜欢安卓,关键看哪个用得顺手。

2、 部署工具与服务

选好了框架,咱们还得准备部署的工具和服务,这就像做菜的调料,能让咱们的AI大餐更美味。

  • Docker: 这家伙能让你把模型和环境打包在一起,不管在哪儿都能运行。它就像你的外卖盒,把美食打包好,随时随地都能享用。

  • Kubernetes: 这是管理容器的大佬,能让咱们轻松管理成千上万的容器。它就像你的餐厅经理,帮你管理好每一道菜。

  • TensorRT: 这是NVIDIA出品的,能让深度学习模型在GPU上跑得飞快。它就像你的涡轮增压器,让模型加速到飞起。

  • ONNX: 这是一个开放的模型格式标准,能让不同的框架之间互相转换模型。它就像你的翻译器,让不同语言的人都能沟通。

  • 持续集成/持续部署(CI/CD)工具:如Jenkins、GitLab CI/CD等,这些工具帮助自动化部署流程,提高部署的速度和可靠性。

  • 监控和日志工具:如Prometheus和ELK Stack,它们用于监控模型的性能和收集日志,便于故障排查和性能优化。

这些工具和服务,能让咱们的部署工作事半功倍。就像做菜,好的调料能让菜更上一层楼。

3、模型优化技术

为了在不同的硬件和应用场景中实现最佳性能,模型优化技术在部署过程中扮演着重要角色。

  • 模型剪枝:通过移除模型中不重要的权重来减少模型大小,例如,使用Hessian-based pruning技术可以减少模型大小高达90%,而对准确率的影响微乎其微。

  • 量化:将模型的权重和激活从浮点数(如FP32)转换为低精度表示(如INT8),以减少模型大小和加速推理过程。例如,一项研究表明,量化后的模型在移动设备上的速度可以提高3倍。

  • 知识蒸馏:通过将一个大型、复杂模型的知识转移到一个更小、更高效的模型中,以减少模型的复杂度。例如,DistilBERT是BERT的一个蒸馏版本,大小减少了40%,而性能损失不到2%。

  • 模型压缩:使用技术如Huffman编码来进一步减少模型的存储需求,例如,Facebook的Zstandard压缩算法可以将模型文件压缩到原始大小的50%以下。

  • 并行计算和分布式训练:通过在多个GPU或TPU上并行训练模型,可以显著加快训练速度,例如,使用Apache MXNet的分布式训练功能可以在多个GPU上训练深度学习模型。

4、 安全性与隐私保护措施

在AI模型部署过程中,安全性和隐私保护是必须考虑的重要因素。

  • 数据加密:在数据传输和存储过程中使用强加密算法,如AES或RSA,以保护数据不被未授权访问。

  • 模型加密:对模型权重和参数进行加密,防止模型被逆向工程或篡改。例如,CryptoNets技术可以在不牺牲性能的情况下对神经网络进行加密。

  • 差分隐私:通过向模型的输出添加噪声来保护用户数据的隐私,例如,Google在其数据集上应用差分隐私技术,以保护用户位置数据的隐私。

  • 访问控制:实施严格的访问控制策略,确保只有授权用户才能访问模型和数据。例如,使用角色基础访问控制(RBAC)来管理用户对API的访问权限。

  • 安全审计:定期进行安全审计和渗透测试,以发现和修复潜在的安全漏洞。例如,使用OWASP Top 10安全风险列表作为审计的起点,确保Web应用的安全。

5、 硬件选择与配置

最后,咱们得聊聊硬件,这可是AI大餐的灶台,没它可不行。

  • GPU: 这家伙是深度学习的心脏,没有它,模型训练和推理就像蜗牛一样慢。NVIDIA的Tesla系列、AMD的Radeon系列都是不错的选择。

  • CPU: 虽然GPU是主力,但CPU也不可或缺,它就像大厨,指挥着整个厨房。

  • 内存和存储: 这俩是模型运行的临时和长期仓库,速度越快,模型跑得越顺。三星、美光的内存和SSD都是不错的选择。

  • 网络设备: 在分布式训练和推理中,高速的网络设备是必须的。就像你的外卖配送,速度越快,顾客越满意。

选硬件,得看你的预算和需求。就像买房,有的人喜欢市中心的繁华,有的人喜欢郊区的宁静,关键看个人偏好。

部署中的哪些坑?

前面我们了解了AI模型部署的流程和需要的工具,这次咱们来扒一扒在这个过程中都踩过哪些坑,以及怎么填平这些坑的。准备好了吗?

1. 硬件选择的坑

在部署AI模型时,硬件的选择至关重要。我们曾经天真地以为,只要有个GPU就能跑天下,结果发现,不同的模型对硬件的需求差异巨大。比如,一些模型需要大量的内存,而一些则对计算速度要求更高。

解决方案: 在部署前,一定要了解模型的硬件需求。可以先在小规模的数据集上进行测试,评估模型对CPU、GPU、内存的需求,再根据这些信息选择合适的硬件。如果预算有限,可以考虑使用云服务,它们通常提供灵活的硬件配置。

2. 模型转换的坑

将训练好的模型转换为部署格式时,我们经常会遇到兼容性问题。比如,有些模型在PyTorch上训练,但部署时却需要用TensorFlow,这就涉及到模型转换的问题。

解决方案: 使用ONNX这类中间表示格式,它可以作为不同框架之间的桥梁。此外,还可以考虑使用像TensorRT这样的工具,它支持多种深度学习框架,并能优化模型以提高推理速度。

3. 环境配置的坑

在部署模型时,环境配置是一个大坑。不同的操作系统、不同的依赖库版本,都可能导致模型运行出错。

解决方案: 尽量使用容器化技术,如Docker,它可以帮助我们创建一致的运行环境。同时,也要确保所有依赖库都是最新且兼容的版本。

4. 性能优化的坑

模型在训练时表现良好,但部署后性能却不尽人意,这通常是因为缺乏针对性的性能优化。

解决方案: 性能优化是一个持续的过程,包括模型剪枝、量化、算子融合等技术。此外,还可以通过分布式推理、模型并行等技术提高模型的推理速度。

5. 安全性和隐私的坑

在部署模型时,我们可能会忽视数据的安全性和隐私保护,这可能导致敏感信息泄露。

解决方案: 在设计系统时,就要考虑到数据的安全和隐私保护。比如,使用加密技术保护数据传输,限制对敏感数据的访问权限,以及确保符合相关的法律法规。

6. 持续集成和部署的坑

在模型更新和部署时,如果没有良好的持续集成和部署(CI/CD)流程,可能会导致新版本的模型部署出错或者覆盖旧版本。

解决方案: 建立清晰的CI/CD流程,确保每次更新都能经过充分的测试。同时,使用版本控制系统来管理不同的模型版本,避免新旧版本冲突。

总之,AI模型部署是一个复杂的过程,涉及到硬件选择、环境配置、性能优化等多个方面。此外,在AI模型部署的过程中,有些细节真的很容易被忽视,但它们却能决定部署的成败。

首先是版本控制。 你可能觉得,模型文件而已,版本控制没那么重要。但当你的模型经过多次迭代后,你会发现,能够追溯每个版本的模型文件是多么重要。有一次,我们急着修复一个生产环境的bug,结果因为没做好版本控制,把一个旧版本的模型文件给部署上去了,问题没解决,还引入了新的问题。

其次是日志记录。 在部署模型时,一定要记得开启日志记录。这不仅能帮你监控模型的性能,还能在模型出现问题时,快速定位问题所在。我们有一次就是因为没有记录详细的日志,导致一个bug花了比预期多几倍的时间才解决。

希望这些经验能帮助你在部署AI模型时避免踩坑,让你的模型在实际应用中发挥最大的价值。

性能优化策略

1、 缓存机制的应用

缓存机制在AI模型部署中扮演着至关重要的角色,尤其是在提高模型响应速度和降低计算资源消耗方面。以下是缓存机制的一些应用实例和效果:

  • 减少数据库访问次数:通过在应用层引入缓存,可以减少对数据库的直接访问,从而降低数据库负载并提高响应速度。例如,一个推荐系统可能需要频繁地访问用户偏好数据,通过缓存这些数据,可以减少数据库查询次数,提升系统性能。

  • 缩短响应时间:在Web应用中,使用缓存可以显著缩短页面加载时间。例如,一个新闻网站通过缓存热门新闻文章,可以确保在高流量时段用户也能快速访问内容。

  • 提高带宽利用率:缓存可以存储重复请求的结果,这样相同的请求就不需要每次都通过网络传输,从而提高了带宽的利用率。

  • 降低能耗:频繁访问缓存比频繁访问主存的能耗更低,因此在移动设备或边缘计算设备上使用缓存可以延长电池寿命。

2、 模型微调与迭代

模型微调是在模型部署后,根据实际业务数据和反馈进行的进一步训练和优化过程。以下是模型微调和迭代的一些关键点:

  • 数据驱动的优化:通过收集模型在生产环境中的表现数据,可以识别模型的不足之处,并针对性地进行微调。例如,如果一个语音识别模型在特定口音的识别上表现不佳,可以通过增加该口音的数据进行微调。

  • 快速迭代:在AI模型部署后,业务需求和数据分布可能会发生变化。通过快速迭代模型,可以确保模型始终适应最新的业务需求。例如,一个电商推荐模型可能需要根据季节性商品变化进行定期更新。

  • A/B测试:在模型微调后,可以通过A/B测试来评估新模型相对于旧模型的性能提升。这种方法可以帮助团队量化模型改进的效果,并做出更数据驱动的决策。

5.3 模块化设计

模块化设计在AI模型部署中提供了多个优势,尤其是在提高系统的可维护性、可扩展性和可重用性方面。以下是模块化设计的一些优势:

  • 提高开发效率:模块化设计允许团队并行开发不同的模块,这样可以缩短整个项目的开发周期。例如,一个包含多个功能模块的AI平台可以由不同的团队同时开发,每个团队负责一个或几个模块。

  • 降低维护成本:当系统出现问题时,模块化设计使得只需关注和修复特定的模块,而不需要对整个系统进行大规模的修改。这种局部性的修改减少了维护工作量和潜在的风险。

  • 促进代码重用:模块化设计鼓励代码的重用,这意味着在不同的项目中可以使用相同的模块,从而减少了重复工作,并提高了代码的一致性。

  • 增强系统的灵活性:模块化设计使得系统更容易适应变化,因为可以独立地替换或升级模块。例如,如果一个机器学习模型需要替换其底层算法,模块化设计可以使得这一过程更加平滑。

通过实施上述性能优化策略,AI模型部署可以更加高效、稳定,并能够快速适应业务需求的变化。

好了,关于AI模型部署的话题,我们今天就聊到这里。希望通过这一系列的分享,能够让你对AI模型部署有了更深入的了解。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值