玩深度学习的朋友们相信都会绕不开tensorflow版本安装以及和cuda, cudnn等GPU库文件的兼容性问题,而且tensorflow版本API 更新很快,各种Python工具包依赖的tensorflow版本各不相同,所有用起来的时候就很 XX 疼,好不容易安装好的版本可以和cuda,cudnn兼容进行GPU运算,然而发现一个很有用的Python工具包的tensorflow依赖项却是其的版本 哭哭
这里介绍一个小技巧,在平常的情况下,如果遇到工具包依赖tensorflow版本与所用不同,并且用不到GPU进行运算则可以使用
pip install tensorflow==1.2.0 --user
而保留配置好的 tensorflow-gpu版本(所幸Google提供了CPU,GPU两个不同版本的库文件,不然则整天装卸装卸装卸)
这样可以用CPU跑工具包,而GPU版本的tensorflow不受影响,而且用上面的这条命令还可以很方便的装卸不同版本的tensorflow(CPU,GPU version).
这里为了跑 edward 概率建模推理工具包,装了tensorflow = 1.2.0 和 tensorflow-gpu = 1.10.0