tensorflow 兼容性问题使用小技巧

玩深度学习的朋友们相信都会绕不开tensorflow版本安装以及和cuda, cudnn等GPU库文件的兼容性问题,而且tensorflow版本API 更新很快,各种Python工具包依赖的tensorflow版本各不相同,所有用起来的时候就很 XX 疼,好不容易安装好的版本可以和cuda,cudnn兼容进行GPU运算,然而发现一个很有用的Python工具包的tensorflow依赖项却是其的版本 哭哭

这里介绍一个小技巧,在平常的情况下,如果遇到工具包依赖tensorflow版本与所用不同,并且用不到GPU进行运算则可以使用

pip install tensorflow==1.2.0 --user

而保留配置好的 tensorflow-gpu版本(所幸Google提供了CPU,GPU两个不同版本的库文件,不然则整天装卸装卸装卸)

这样可以用CPU跑工具包,而GPU版本的tensorflow不受影响,而且用上面的这条命令还可以很方便的装卸不同版本的tensorflow(CPU,GPU version). 

这里为了跑 edward 概率建模推理工具包,装了tensorflow = 1.2.0 和 tensorflow-gpu = 1.10.0 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Baobin Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值