代码看了一天.其实我现在并没有完全搞懂........看懂的地方标记了注释,后面再做补充
import argparse
import numpy as np
from scipy.stats import norm
import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib import animation
import seaborn as sns #Seaborn是比Matplotlib更高级的免费库
import cProfile
Count=0
seed = 42
np.random.seed(seed)
tf.set_random_seed(seed)
class DataDistribution(object): #真实数据分布
def __init__(self):#只执行一次
self.mu = 4 #线 的参数 高斯分布相关
self.sigma = 0.5
def sample(self, N):#每次迭代都运行
samples = np.random.normal(self.mu, self.sigma, N) #正态分布
samples.sort() #画图 原来真实分布
return samples
class GeneratorDistribution(object): #随机初始化分布,当成G输入
def __init__(self, range):
self.range = range
def sample(self, N): #迭代次数的两倍
return np.linspace(-self.range, self.range, N) + \
np.random.random(N) * 0.01
def static_vars(**kwargs):
def decorate(func):
for k in kwargs:
setattr(func, k, kwargs[k])
return func
return decorate
def linear(input, output_dim, scope=None, stddev=1.0):#100次迭代 运行了14次
norm = tf.random_normal_initializer(stddev=stddev) #随机 w
const = tf.constant_initializer(0.0) # b
with tf.variable_scope(scope or 'linear'):
w = tf.get_variable('w', [input.get_shape()[1], output_dim], initializer=norm)#随机w
b = tf.get_variable('b', [output_dim], initializer=const)
return tf.matmul(input, w) + b
def generator(input, h_dim):
h0 = tf.nn.softplus(linear(input, h_dim, 'g0'))
h1 = linear(h0, 1, 'g1')
return h1
def discriminator(input, h_dim): # #初始化 w b
h0 = tf.tanh(linear(input, h_dim * 2, 'd0'))
h1 = tf.tanh(linear(h0, h_dim * 2, 'd1'))
h2 = tf.tanh(linear(h1, h_dim * 2, scope='d2'))
h3 = tf.sigmoid(linear(h2, 1, scope='d3'))
return h3
#@static_vars(counter = 0)
def optimizer(loss, var_list, initial_learning_rate):
decay = 0.95
num_decay_steps = 150 #每迭代150次 做一次学习率的衰减
batch = tf.Variable(0)
learning_rate = tf.train.exponential_decay(
initial_learning_rate,
batch,
num_decay_steps,
decay,
staircase=True
)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(
loss,
global_step=batch,
var_list=var_list
)
#optimizer.counter += 1
#print("counter:", optimizer.counter)
return optimizer
class GAN(object):
def __init__(self, data, gen, num_steps, batch_size, log_every):
self.data = data #DataDistribution
self.gen = gen
self.num_steps = num_steps
self.batch_size = batch_size
self.log_every = log_every
self.mlp_hidden_size = 4 #用神经网络模型当G D 网络时,隐层神经元个数
self.count = 0
self.learning_rate = 0.03 #学习率
self._create_model()
def _create_model(self):# 1/100次
with tf.variable_scope('D_pre'):#先训练D的初始化
self.pre_input = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
self.pre_labels = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
D_pre = discriminator(self.pre_input, self.mlp_hidden_size) #初始化 w b
self.pre_loss = tf.reduce_mean(tf.square(D_pre - self.pre_labels))
self.pre_opt = optimizer(self.pre_loss, None, self.learning_rate)
# This defines the generator network - it takes samples from a noise
# distribution as input, and passes them through an MLP.
with tf.variable_scope('Gen'):
self.z = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
self.G = generator(self.z, self.mlp_hidden_size)
# The discriminator tries to tell the difference between samples from the
# true data distribution (self.x) and the generated samples (self.z).
#
# Here we create two copies of the discriminator network (that share parameters),
# as you cannot use the same network with different inputs in TensorFlow.
with tf.variable_scope('Disc') as scope:
self.x = tf.placeholder(tf.float32, shape=(self.batch_size, 1))
self.D1 = discriminator(self.x, self.mlp_hidden_size)#构造D1网络,真实数据当做输入
scope.reuse_variables()#重用
self.D2 = discriminator(self.G, self.mlp_hidden_size)#构造D2网络,G数据当做输入
# Define the loss for discriminator and generator networks (see the original
# paper for details), and create optimizers for both
self.loss_d = tf.reduce_mean(-tf.log(self.D1) - tf.log(1 - self.D2))#希望self.D1 向1...self.D2 向0 计算结果是均值
self.loss_g = tf.reduce_mean(-tf.log(self.D2))# 1
self.d_pre_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='D_pre')
self.d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Disc')
self.g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Gen')
self.opt_d = optimizer(self.loss_d, self.d_params, self.learning_rate)
self.opt_g = optimizer(self.loss_g, self.g_params, self.learning_rate)
def train(self):# 1
with tf.Session() as session:
tf.global_variables_initializer().run()
# pretraining discriminator
num_pretrain_steps = 1000
for step in range(num_pretrain_steps):
d = (np.random.random(self.batch_size) - 0.5) * 10.0
labels = norm.pdf(d, loc=self.data.mu, scale=self.data.sigma) #高斯
pretrain_loss, _ = session.run([self.pre_loss, self.pre_opt], {
self.pre_input: np.reshape(d, (self.batch_size, 1)),
self.pre_labels: np.reshape(labels, (self.batch_size, 1))
})
self.weightsD = session.run(self.d_pre_params)
# copy weights from pre-training over to new D network
for i, v in enumerate(self.d_params):
session.run(v.assign(self.weightsD[i]))
for step in range(self.num_steps):
# update discriminator
x = self.data.sample(self.batch_size) #原始的分布图 x是随机的
z = self.gen.sample(self.batch_size)
loss_d, _ = session.run([self.loss_d, self.opt_d], { #自动调网络?????
self.x: np.reshape(x, (self.batch_size, 1)),
self.z: np.reshape(z, (self.batch_size, 1))
})
# update generator
z = self.gen.sample(self.batch_size)
loss_g, _ = session.run([self.loss_g, self.opt_g], {
self.z: np.reshape(z, (self.batch_size, 1))
})
if step % self.log_every == 0:
print('{}: {}\t{}'.format(step, loss_d, loss_g))
if step % 100 == 0 or step==0 or step == self.num_steps -1 :
self._plot_distributions(session)
def _samples(self, session, num_points=10000, num_bins=100):# 2/100次
xs = np.linspace(-self.gen.range, self.gen.range, num_points)
bins = np.linspace(-self.gen.range, self.gen.range, num_bins)
# data distribution
d = self.data.sample(num_points)
pd, _ = np.histogram(d, bins=bins, density=True)
# generated samples
zs = np.linspace(-self.gen.range, self.gen.range, num_points)
g = np.zeros((num_points, 1))
for i in range(num_points // self.batch_size):
g[self.batch_size * i:self.batch_size * (i + 1)] = session.run(self.G, {
self.z: np.reshape(
zs[self.batch_size * i:self.batch_size * (i + 1)],
(self.batch_size, 1)
)
})
pg, _ = np.histogram(g, bins=bins, density=True)
return pd, pg
def _plot_distributions(self, session):# 2/100
pd, pg = self._samples(session)
p_x = np.linspace(-self.gen.range, self.gen.range, len(pd))
f, ax = plt.subplots(1)
ax.set_ylim(0, 1)
plt.plot(p_x, pd, label='real data')
plt.plot(p_x, pg, label='generated data')
plt.title('1D Generative Adversarial Network')
plt.xlabel('Data values')
plt.ylabel('Probability density')
plt.legend()
plt.show()
def main(args):
model = GAN(
DataDistribution(), #真实数据分布 只执行一下init
GeneratorDistribution(range=8),#随机初始化分布 当成G 输入
args.num_steps, #迭代次数
args.batch_size, #一次迭代 个
args.log_every, #隔多少次打印loss
)
model.train()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--num-steps', type=int, default=1200,#1200
help='the number of training steps to take')
parser.add_argument('--batch-size', type=int, default=12,
help='the batch size')
parser.add_argument('--log-every', type=int, default=10,
help='print loss after this many steps')
return parser.parse_args()
if __name__ == '__main__':
main(parse_args())