一阶系统的时域分析
前言
前面学习了控制系统的数学模型。分析、研究和设计控制系统的首要工作是确定系统的数学模型,一旦获得系统的数学模型,便可以用不同的方法分析控制系统的性能。
时域分析法是根据描述系统的微分方程或传递函数,直接求解出在某种典型输入作用下,系统输出量随时间t变化的表达式,即时间相应。然后根据此表达式或其相应的描述曲线来分析系统的稳定性、快速性和准确性。
时域分析法具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
典型输入信号
为了求解系统的时间相应,必须已知输入信号的解析表达式。
在分析和研究控制系统时,需要选取一些具有代表性的实验信号作为系统的输入,称为典型输入信号。
选取测试信号时必须考虑的原则:
- 选取的输入信号的典型形式应反映系统工作时的大部分实际情况。
- 选取外加输入信号的形式应尽可能简单,易于在实验室获得,以便于数学分析和实验研究。
- 应选取那些能使系统工作在最不利情况下的输入信号作为典型的测试信号。
1.单位脉冲信号
幅值为无穷大、持续时间为零的理想脉冲信号实际上是无法得到的。脉冲宽度很窄的电压信号、瞬间作用的冲击力等都可以近似为脉冲信号。
单位脉冲信号可以用于考察系统在脉冲扰动后的恢复运动。
2.单位阶跃信号
单位阶跃信号表示在t=0处,输入量的幅值瞬间由0突变为1的过程。
若信号突变的幅值不为1,如 r ( t ) = R 1 ( t ) r(t) = R 1(t) r(t)=R1(t),则表示信号为幅值等于R的阶跃函数,其中R为常量。
时域分析中,单位阶跃信号用得最为广泛,实际电路中,开关的转换、电源的突然接通、负荷的突变等,均可视为阶跃信号。
单位阶跃信号可用做考察系统对恒值信号的跟踪能力时的输入信号。
3.单位斜坡信号(速度阶跃信号)
单位斜坡信号表示由零值开始随时间t线性增长的信号,其斜率为1.
若斜率不为1,如 r ( t ) = R t r(t) = R t r(t)=Rt,则表示信号为斜率等于R的斜坡信号。
在闸门均速升降、工件匀速运动时,其位置信号均可视为斜坡信号。
单位斜坡信号是用于考查系统对匀速信号跟踪能力时的实验信号。
4.单位抛物线信号(加速度阶跃信号)
单位抛物线信号表示信号的大小随时间t以加速度为1的等加速度增加。
以在、恒转矩启动的电动机位置信号,可视为等加速度信号。
单位抛物线信号是用于考察系统对于等加速度信号的跟踪能力时的实验信号。