参数说明
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes: 2
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id: 0
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.4
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
}
以上是MultiBoxLoss的multibox_loss_param。
loc_loss_type: SMOOTH_L1——对于位置信息的loss函数选择L1,还可以选择EuclideanLoss
conf_loss_type: SOFTMAX ——对于conf类别信息的loss函数选择softmax,还可以选择SigmoidCrossEntropyLoss
loc_weight: 1.0——位置信息loss函数的惩罚权重
num_classes: 2——类别数
share_location: true——是否所有类别都公用同一个位置信息预测。
match_type: PER_PREDICTION——匹配策略,PER_PREDICTION表示:首先保证每一个Ground Truth都会找到一个符合条件下overlap最大的source box;然后将剩余满足threshold条件的source boxes与相应的Ground Truth匹配。
overlap_threshold: 0.5——source boxes与Ground Truth的overlap大于0.5时被归类为正样本
use_prior_for_matching: true——使用prior box或者adjusted prior box与Ground Truth进行匹配,prior box就是直接在原图上生成的default box,而adjusted prior box是指经过位置回归后的default box,其大小和位置可能都会产生相应的offset。
background_label_id: 0——背景样本的标签号,一般设置为0号标签
use_difficult_gt: true——使用困难ground truth
neg_pos_ratio: 3.0——负正样本比例,负:正。
neg_overlap: 0.4——与Ground Truth的overlap小于neg_overlap的source boxes被判定为负样本。
code_type: CENTER_SIZE——编码bounding box的方式,CENTER_SIZE方式指的是记录bounding box是[x_center,y_center,w,h]的数组记录一个bounding box;也可以选择CORNER,代表采用[minx,miny,maxx,maxy]来记录一个bounding box。
ignore_cross_boundary_bbox: false——是否忽略超出图像边界的bounding box,不忽略的话bounding box的值只能到图像边缘。
mining_type: MAX_NEGATIVE——负样本挖掘的方式,还有OHEM,不采用负样本挖掘:NONE