Introduction To Linear Algebra(2) Matrix Algebra

properties of invertible matrix

( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^{T} (AT)1=(A1)T
[ A I ] → [ I A − 1 ] [A\quad I] \rightarrow[I\quad A^{-1}] [AI][IA1]
condition number of matrix: c o n d ( A ) = ∣ ∣ A ∣ ∣ ∗ ∣ ∣ A − 1 ∣ ∣ cond(A)=||A||*||A^{-1}|| cond(A)=AA1
big condition number means the matrix is in ill-condition and it maybe not invertible
Here are some statements either all true or all false:
a.A is an invertible matrix
b.A is row equavalent to n × n n\times n n×n identity matrix
c.A has n pivot positions
d.The equation A x = 0 Ax=0 Ax=0 has only the trivial solution
e.The columns A A A from a linear identity set.
f. The linear transform x → A x x\rightarrow Ax xAx is one to one
g.The equation A x = b Ax=b Ax=b has at least one solution for each b b b in R n R^n Rn
h.The columns of A A A span R n R^n Rn
i.The linear transformation x → A x x\rightarrow Ax xAx maps R n R^n Rn onto R n R^n Rn
j.There is an n × n n\times n n×nmatrix C C C such that C A = I CA=I CA=I or A C = I AC=I AC=I
i. A T A^T AT is an invertible matrix

Partitioned Matrices

A matrix of the form A = [ A 11 A 12 0 A 22 ] A=\begin{bmatrix}A_{11}&A_{12} \\0&A_{22} \end{bmatrix} A=[A110A12A22] is said to be block upper triangular. Assume that A 11 A_{11} A11 is p × p p\times p p×p, A 22 A_{22} A22 is q × q q\times q q×q and A A A is invertible. Then A − 1 = [ A 11 − 1 − A 11 − 1 A 12 A 22 − 1 0 A 22 − 1 ] A^{-1}=\begin{bmatrix}A_{11}^{-1}& -A_{11}^{-1}A_{12}A_{22}^{-1}\\0&A^{-1}_{22}\end{bmatrix} A1=[A1110A111A12A221A221]

Matrix Factorizations

LU Factorization
A = L U = [ 1 0 0 0 ∗ 1 0 0 ∗ ∗ 1 0 ∗ ∗ ∗ 1 ] [ × ∗ ∗ ∗ ∗ 0 × ∗ ∗ ∗ 0 0 0 × ∗ 0 0 0 0 × ] A=LU=\begin{bmatrix}1&0&0&0\\*&1&0&0\\*&*&1&0\\*&*&*&1\end{bmatrix} \begin{bmatrix}\times&*&*&*&*\\0&\times&*&*&*\\0&0&0&\times&*\\0&0&0&0&\times\end{bmatrix} A=LU=1010010001×000×0000×0×
Then the solution of A x = b Ax=b Ax=b could be get through L y = b Ly=b Ly=b and U x = y Ux=y Ux=y

Subspaces of R n R^n Rn

The subspaces of R n R^n Rn is any set H H H in R n R^n Rn that has three propoerties:
a.The zero vector in H H H.
b.For each u u u and v v v in H H H, the sum u + v u+v u+v is in H H H
c.For each u u u in H H H and each scalar c c c, the vector c u cu cu is in H

The Null space of a matrix A is the set Nul A of all solutions of the homogeneous equation A x = 0 Ax=0 Ax=0
The Null space of a m × n m\times n m×n matrix A is subspace of R n R^n Rn
Basis: A basis for a subspace H of R n R^n Rn is a linearly independent set in H that span H
The pivot columns of a matrix A A A form a basis for the column space of A A A.

Demension and Rank

Demension of a nonzero subspace H H H, denoted by dim H H H, is the number of vectors in any basis for H H H. The demension of the zero subspace {0} is definded to be zero.
The rank of a matrix A A A, denoted by rank A A A, is the demension of the column space of A A A.
If a matrix A A A has n columns, then r a n k A + d i m N u l A = n rank A + dim Nul A = n rankA+dimNulA=n
Rank and the Invertible matrix theorem
Let A A A be n × n n\times n n×n matrix. Then the following statements are each equivalent to the statement that A A A is an invertible matrix:
m. the columns of A A A form a basis of R n R^n Rn
n. Col A= R n R^n Rn
o. dim Col A=n
p. rank A=n
q. Nul A={0}
r. dim Nul A=0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值