Bert的MLM任务loss原理

BERT的预训练任务包括MLM和NSP,本文主要关注MLM。该任务中,15%的词汇被mask,通过transformer等层编码,然后预测mask位置的词,相当于在词汇表大小的类别上做多分类。logits与one-hot编码的label计算交叉熵,加权平均后得到loss。
摘要由CSDN通过智能技术生成

         bert预训练有MLM和NSP两个任务,其中MLM是类似于“完形填空”的方式,对一个句子里的15%的词进行mask,通过双向transformer+feedforward+rediual_add+layer_norm完成对每个词的embedding编码,然后对mask的这个词进行预测,预测过程相当于做多分类,类别的个数是词汇的总个数,将mask的词的emb经过MLP变换生成在每个类别词汇上的logits 概率,label是mask位置上真实词在整个词汇上的one-hot编码,将logits和label计算交叉熵,又做了加权平均,即可得出MLM的loss,过程如下:

         源码中的get_masked_lm_output()方法过程解析:

1、输入input_tensor:[batch,maskednums, embed_size]

2、经过线性变换+layernorm:[batch,maskednums, 768]

3、logits:将embedding table[3万,768]作为变换矩阵,计算logits:[batch,maskednums, 3万],相当于得出每个被盖住词在3万个词上的概率,其实就是3万个类别多分类

4、labels:one-hot编码[maskednums,3万]

5、计算交叉熵:[bactch, maskednums]

6、loss:加权平均得出一个实数

def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
                         label_ids, label_weights):
  """Get loss and log probs for the masked LM."""
  input_tensor = gather_indexes(input_tensor, positions)

  with tf.variable_scope("cls/predictions"):
    # We apply one more non-linear transformation before the output layer.
    # This matrix is not used after pre-training.
    with tf.variable_scope("transform"):
      input_tensor = tf.layers.dense(
          input_tensor,
          units=bert_config.hidden_size,
          activation=modeling.get_activation(bert_config.hidden_act),
          kernel_initializer=modeling.create_initializer(
              bert_config.initializer_range))
      input_tensor = modeling.layer_norm(input_tensor)

    # The output weights are the same as the input embeddings, but there is
    # an output-only bias for each token.
    output_bias = tf.get_variable(
        "output_bias",
        shape=[bert_config.vocab_size],
        initializer=tf.zeros_initializer())
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    label_ids = tf.reshape(label_ids, [-1])
    label_weights = tf.reshape(label_weights, [-1])

    one_hot_labels = tf.one_hot(
        label_ids, depth=bert_config.vocab_size, dtype=tf.float32)

    # The `positions` tensor might be zero-padded (if the sequence is too
    # short to have the maximum number of predictions). The `label_weights`
    # tensor has a value of 1.0 for every real prediction and 0.0 for the
    # padding predictions.
    per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
    numerator = tf.reduce_sum(label_weights * per_example_loss)
    denominator = tf.reduce_sum(label_weights) + 1e-5
    loss = numerator / denominator

  return (loss, per_example_loss, log_probs)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值