【树结构】基础部分 —— 二叉树、顺序存储二叉树、线索化二叉树

一、二叉树

1、二叉树的概念

在这里插入图片描述

  1. 树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
  2. 二叉树的子节点分为左节点和右节点
  3. 示意图
    在这里插入图片描述
  4. 如果该二叉树的所有叶子节点都在最后一层,并且结点总数=2^n-1 , n 为层数,则我们称为满二叉树。
  5. 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树
    在这里插入图片描述
2、二叉树的遍历(应用实例)

使用前序,中序和后序对下面的二叉树进行遍历。

  1. 前序遍历:先输出父节点,再遍历左子树和右子树
  2. 中序遍历:先遍历左子树,再输出父节点,再遍历右子树
  3. 后序遍历:先遍历左子树,再遍历右子树,最后输出父节点
  4. 小结:看输出父节点的顺序,就确定是前序,中序还是后序

二叉树遍历应用实例:
在这里插入图片描述

public class BinaryTreeDemo {

	public static void main(String[] args) {
		//先需要创建一颗二叉树
		BinaryTree binaryTree = new BinaryTree();
		//创建需要的结点
		HeroNode root = new HeroNode(1, "宋江");
		HeroNode node2 = new HeroNode(2, "吴用");
		HeroNode node3 = new HeroNode(3, "卢俊义");
		HeroNode node4 = new HeroNode(4, "林冲");
		HeroNode node5 = new HeroNode(5, "关胜");
		
		//说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
		root.setLeft(node2);
		root.setRight(node3);
		node3.setRight(node4);
		node3.setLeft(node5);
		binaryTree.setRoot(root);
		
		//测试
		System.out.println("前序遍历"); // 1,2,3,5,4
		binaryTree.preOrder();
		
		//测试 
		System.out.println("中序遍历");
		binaryTree.infixOrder(); // 2,1,5,3,4
		
		System.out.println("后序遍历");
		binaryTree.postOrder(); // 2,5,4,3,1	
	}
}

//定义BinaryTree 二叉树
class BinaryTree {
	private HeroNode root;

	public void setRoot(HeroNode root) {
		this.root = root;
	}
	
	//前序遍历
	public void preOrder() {
		if(this.root != null) {
			this.root.preOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.root != null) {
			this.root.infixOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
	//后序遍历
	public void postOrder() {
		if(this.root != null) {
			this.root.postOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
}

//先创建HeroNode 结点
class HeroNode {
	private int no;
	private String name;
	private HeroNode left; //默认null
	private HeroNode right; //默认null
	public HeroNode(int no, String name) {
		this.no = no;
		this.name = name;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public HeroNode getLeft() {
		return left;
	}
	public void setLeft(HeroNode left) {
		this.left = left;
	}
	public HeroNode getRight() {
		return right;
	}
	public void setRight(HeroNode right) {
		this.right = right;
	}
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}

	//编写前序遍历的方法
	public void preOrder() {
		System.out.println(this); //先输出父结点
		//递归向左子树前序遍历
		if(this.left != null) {
			this.left.preOrder();
		}
		//递归向右子树前序遍历
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	//中序遍历
	public void infixOrder() {
		
		//递归向左子树中序遍历
		if(this.left != null) {
			this.left.infixOrder();
		}
		//输出父结点
		System.out.println(this);
		//递归向右子树中序遍历
		if(this.right != null) {
			this.right.infixOrder();
		}
	}
	//后序遍历
	public void postOrder() {
		if(this.left != null) {
			this.left.postOrder();
		}
		if(this.right != null) {
			this.right.postOrder();
		}
		System.out.println(this);
	}
}
3、二叉树查找指定节点

要求:

  1. 请编写前序查找,中序查找和后序查找的方法。
  2. 并分别使用三种查找方式,查找 heroNO=5 的节点
  3. 并分析各种查找方式,分别比较了多少次
  4. 思路分析图解
    在这里插入图片描述
public class BinaryTreeDemo {

	public static void main(String[] args) {
		//先需要创建一颗二叉树
		BinaryTree binaryTree = new BinaryTree();
		//创建需要的结点
		HeroNode root = new HeroNode(1, "宋江");
		HeroNode node2 = new HeroNode(2, "吴用");
		HeroNode node3 = new HeroNode(3, "卢俊义");
		HeroNode node4 = new HeroNode(4, "林冲");
		HeroNode node5 = new HeroNode(5, "关胜");
		
		//说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
		root.setLeft(node2);
		root.setRight(node3);
		node3.setRight(node4);
		node3.setLeft(node5);
		binaryTree.setRoot(root);
		
		//前序遍历
		//前序遍历的次数 :4 
		System.out.println("前序遍历方式~~~");
		HeroNode resNode = binaryTree.preOrderSearch(5);
		if (resNode != null) {
			System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
		} else {
			System.out.printf("没有找到英雄");
		}
		
		//中序遍历查找
		//中序遍历3次
		System.out.println("中序遍历方式~~~");
		HeroNode resNode = binaryTree.infixOrderSearch(5);
		if (resNode != null) {
			System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
		} else {
			System.out.printf("没有找到英雄");
		}
		
		//后序遍历查找
		//后序遍历查找的次数  2次
		System.out.println("后序遍历方式~~~");
		HeroNode resNode = binaryTree.postOrderSearch(5);
		if (resNode != null) {
			System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
		} else {
			System.out.printf("没有找到英雄");
		}	
	}
}

//定义BinaryTree 二叉树
class BinaryTree {
	private HeroNode root;

	public void setRoot(HeroNode root) {
		this.root = root;
	}
	
	//前序遍历
	public HeroNode preOrderSearch(int no) {
		if(root != null) {
			return root.preOrderSearch(no);
		} else {
			return null;
		}
	}
	//中序遍历
	public HeroNode infixOrderSearch(int no) {
		if(root != null) {
			return root.infixOrderSearch(no);
		}else {
			return null;
		}
	}
	//后序遍历
	public HeroNode postOrderSearch(int no) {
		if(root != null) {
			return this.root.postOrderSearch(no);
		}else {
			return null;
		}
	}
}

//先创建HeroNode 结点
class HeroNode {
	private int no;
	private String name;
	private HeroNode left; //默认null
	private HeroNode right; //默认null
	public HeroNode(int no, String name) {
		this.no = no;
		this.name = name;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public HeroNode getLeft() {
		return left;
	}
	public void setLeft(HeroNode left) {
		this.left = left;
	}
	public HeroNode getRight() {
		return right;
	}
	public void setRight(HeroNode right) {
		this.right = right;
	}
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}
	
	
	//前序遍历查找
	/**
	 * 
	 * @param no 查找no
	 * @return 如果找到就返回该Node ,如果没有找到返回 null
	 */
	public HeroNode preOrderSearch(int no) {
		System.out.println("进入前序遍历");
		//比较当前结点是不是
		if(this.no == no) {
			return this;
		}
		//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
		//2.如果左递归前序查找,找到结点,则返回
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.preOrderSearch(no);
		}
		if(resNode != null) {//说明我们左子树找到
			return resNode;
		}
		//1.左递归前序查找,找到结点,则返回,否继续判断,
		//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
		if(this.right != null) {
			resNode = this.right.preOrderSearch(no);
		}
		return resNode;
	}
	
	//中序遍历查找
	public HeroNode infixOrderSearch(int no) {
		//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.infixOrderSearch(no);
		}
		if(resNode != null) {
			return resNode;
		}
		System.out.println("进入中序查找");
		//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
		if(this.no == no) {
			return this;
		}
		//否则继续进行右递归的中序查找
		if(this.right != null) {
			resNode = this.right.infixOrderSearch(no);
		}
		return resNode;
		
	}
	
	//后序遍历查找
	public HeroNode postOrderSearch(int no) {
		
		//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
		HeroNode resNode = null;
		if(this.left != null) {
			resNode = this.left.postOrderSearch(no);
		}
		if(resNode != null) {//说明在左子树找到
			return resNode;
		}
		
		//如果左子树没有找到,则向右子树递归进行后序遍历查找
		if(this.right != null) {
			resNode = this.right.postOrderSearch(no);
		}
		if(resNode != null) {
			return resNode;
		}
		System.out.println("进入后序查找");
		//如果左右子树都没有找到,就比较当前结点是不是
		if(this.no == no) {
			return this;
		}
		return resNode;
	}	
}
4、二叉树删除节点

要求:

  1. 如果删除的节点是叶子节点,则删除该节点
  2. 如果删除的节点是非叶子节点,则删除该子树
  3. 测试,删除掉5号叶子节点
  4. 完成删除思路分析
    在这里插入图片描述
public class BinaryTreeDemo {

	public static void main(String[] args) {
		//先需要创建一颗二叉树
		BinaryTree binaryTree = new BinaryTree();
		//创建需要的结点
		HeroNode root = new HeroNode(1, "宋江");
		HeroNode node2 = new HeroNode(2, "吴用");
		HeroNode node3 = new HeroNode(3, "卢俊义");
		HeroNode node4 = new HeroNode(4, "林冲");
		HeroNode node5 = new HeroNode(5, "关胜");
		
		//说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
		root.setLeft(node2);
		root.setRight(node3);
		node3.setRight(node4);
		node3.setLeft(node5);
		binaryTree.setRoot(root);
		
		//测试删除结点
		System.out.println("删除前,前序遍历");
		binaryTree.preOrder(); //  1,2,3,5,4
		binaryTree.delNode(5);
		System.out.println("删除后,前序遍历");
		binaryTree.preOrder(); // 1,2,3,4	
	}
}

//定义BinaryTree 二叉树
class BinaryTree {
	private HeroNode root;

	public void setRoot(HeroNode root) {
		this.root = root;
	}
	
	//删除结点
	public void delNode(int no) {
		if(root != null) {
			//如果只有一个root结点, 这里立即判断root是不是就是要删除结点
			if(root.getNo() == no) {
				root = null;
			} else {
				//递归删除
				root.delNode(no);
			}
		}else{
			System.out.println("空树,不能删除~");
		}
	}
	//前序遍历
	public void preOrder() {
		if(this.root != null) {
			this.root.preOrder();
		}else {
			System.out.println("二叉树为空,无法遍历");
		}
	}
}

//先创建HeroNode 结点
class HeroNode {
	private int no;
	private String name;
	private HeroNode left; //默认null
	private HeroNode right; //默认null
	public HeroNode(int no, String name) {
		this.no = no;
		this.name = name;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public HeroNode getLeft() {
		return left;
	}
	public void setLeft(HeroNode left) {
		this.left = left;
	}
	public HeroNode getRight() {
		return right;
	}
	public void setRight(HeroNode right) {
		this.right = right;
	}
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}
	
	//递归删除结点
	//1.如果删除的节点是叶子节点,则删除该节点
	//2.如果删除的节点是非叶子节点,则删除该子树
	public void delNode(int no) {
		
		//思路
		/*
		 * 	1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
			2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
			3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
			4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
			5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.

		 */
		//2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
		if(this.left != null && this.left.no == no) {
			this.left = null;
			return;
		}
		//3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
		if(this.right != null && this.right.no == no) {
			this.right = null;
			return;
		}
		//4.我们就需要向左子树进行递归删除
		if(this.left != null) {
			this.left.delNode(no);
		}
		//5.则应当向右子树进行递归删除
		if(this.right != null) {
			this.right.delNode(no);
		}
	}
	
	//编写前序遍历的方法
	public void preOrder() {
		System.out.println(this); //先输出父结点
		//递归向左子树前序遍历
		if(this.left != null) {
			this.left.preOrder();
		}
		//递归向右子树前序遍历
		if(this.right != null) {
			this.right.preOrder();
		}
	}	
}

二、顺序存储二叉树

基本说明
从数据存储来看,数组存储方式和树的存储方式可以相互转换,即数组可以转换成树,树也可以转换成数组,示意图:
在这里插入图片描述

顺序存储二叉树的特点:

  1. 顺序二叉树通常只考虑完全二叉树
  2. 第 n 个元素的左子节点为 2*n+1
  3. 第 n 个元素的右子节点为 2*n+2
  4. 第 n 个元素的父节点为 (n-1)/2
  5. n 表示二叉树中的第几个元素(按 0 开始编号如图所示)

实例: 数组 { 1, 2, 3, 4, 5, 6, 7 },要求以二叉树前序遍历的方式进行遍历。前序遍历的结果应当为 1, 2, 4, 5, 3, 6, 7

public class ArrBinaryTreeDemo {

	public static void main(String[] args) {
		int[] arr = { 1, 2, 3, 4, 5, 6, 7 };
		//创建一个 ArrBinaryTree
		ArrBinaryTree arrBinaryTree = new ArrBinaryTree(arr);
		arrBinaryTree.preOrder(); // 1,2,4,5,3,6,7
	}

}

//编写一个ArrayBinaryTree, 实现顺序存储二叉树遍历

class ArrBinaryTree {
	private int[] arr;//存储数据结点的数组

	public ArrBinaryTree(int[] arr) {
		this.arr = arr;
	}
	
	//重载preOrder
	public void preOrder() {
		this.preOrder(0);
	}
	
	//编写一个方法,完成顺序存储二叉树的前序遍历
	/**
	 * 
	 * @param index 数组的下标 
	 */
	public void preOrder(int index) {
		//如果数组为空,或者 arr.length = 0
		if(arr == null || arr.length == 0) {
			System.out.println("数组为空,不能按照二叉树的前序遍历");
		}
		//输出当前这个元素
		System.out.println(arr[index]); 
		//向左递归遍历
		if((index * 2 + 1) < arr.length) {
			preOrder(2 * index + 1 );
		}
		//向右递归遍历
		if((index * 2 + 2) < arr.length) {
			preOrder(2 * index + 2);
		}
	}
}

八大排序算法中的堆排序,就会使用到顺序存储二叉树。

三、线索化二叉树

将数列 { 1, 3, 6, 8, 10, 14 } 构建成一颗二叉树。n+1=7
11|13|16|110|14|
问题分析:
1、当我们对上面的二叉树进行中序遍历时,数列为 { 8, 3, 10, 1, 6, 14 }
2、但是 6, 8, 10, 14 这几个节点的左右指针,并没有完全的利用上
3、如果我们希望充分的利用各个节点的左右指针,让各个节点可以指向自己的前后节点,就需要使用线索二叉树。

线索二叉树基本介绍:

  1. n 个结点的二叉链表中含有 n+1【公式 2n-(n-1)=n+1 】个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
  2. 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
  3. 一个结点的前一个结点,称为前驱结点
  4. 一个结点的后一个结点,称为后继结点

实例: 将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 { 8, 3, 10, 1, 14, 6 }
在这里插入图片描述
思路分析:
在这里插入图片描述
当线索化二叉树后,node 节点的属性 left 和 right ,有如下情况:

  1. left 指向的是左子树,也可能是指向的前驱节点。比如 ① 节点 left 指向的左子树,而 ⑩ 节点的 left 指向的就是前驱节点。
  2. right 指向的是右子树,也可能是指向后继节点,比如 ① 节点 right 指向的是右子树,而 ⑩ 节点的 right 指向的是后继节点。
public class ThreadedBinaryTreeDemo {

	public static void main(String[] args) {
		//测试一把中序线索二叉树的功能
		HeroNode root = new HeroNode(1, "tom");
		HeroNode node2 = new HeroNode(3, "jack");
		HeroNode node3 = new HeroNode(6, "smith");
		HeroNode node4 = new HeroNode(8, "mary");
		HeroNode node5 = new HeroNode(10, "king");
		HeroNode node6 = new HeroNode(14, "dim");
		
		//二叉树,后面我们要递归创建, 现在简单处理使用手动创建
		root.setLeft(node2);
		root.setRight(node3);
		node2.setLeft(node4);
		node2.setRight(node5);
		node3.setLeft(node6);
		
		//测试中序线索化
		ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
		threadedBinaryTree.setRoot(root);
		threadedBinaryTree.threadedNodes();
		
		//测试: 以10号节点测试
		HeroNode leftNode = node5.getLeft();
		HeroNode rightNode = node5.getRight();
		System.out.println("10号结点的前驱结点是 ="  + leftNode); //3
		System.out.println("10号结点的后继结点是="  + rightNode); //1
	}
}

//定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
	private HeroNode root;
	
	//为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
	//在递归进行线索化时,pre 总是保留前一个结点
	private HeroNode pre = null;

	public void setRoot(HeroNode root) {
		this.root = root;
	}
	
	//重载一把threadedNodes方法
	public void threadedNodes() {
		this.threadedNodes(root);
	}


	//编写对二叉树进行中序线索化的方法
	/**
	 * 
	 * @param node 就是当前需要线索化的结点
	 */
	public void threadedNodes(HeroNode node) {
		
		//如果node==null, 不能线索化
		if(node == null) {
			return;
		}
		
		//(一)先线索化左子树
		threadedNodes(node.getLeft());
		//(二)线索化当前结点[有难度]
		
		//处理当前结点的前驱结点
		//以8结点来理解
		//8结点的.left = null , 8结点的.leftType = 1
		if(node.getLeft() == null) {
			//让当前结点的左指针指向前驱结点 
			node.setLeft(pre); 
			//修改当前结点的左指针的类型,指向前驱结点
			node.setLeftType(1);
		}
		
		//处理后继结点
		if (pre != null && pre.getRight() == null) {
			//让前驱结点的右指针指向当前结点
			pre.setRight(node);
			//修改前驱结点的右指针类型
			pre.setRightType(1);
		}
		//!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
		pre = node;
		
		//(三)在线索化右子树
		threadedNodes(node.getRight());
			
	}
}

//先创建HeroNode 结点
class HeroNode {
	private int no;
	private String name;
	private HeroNode left; //默认null
	private HeroNode right; //默认null
	//说明
	//1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点
	//2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点
	private int leftType;
	private int rightType;
	
	
	
	public int getLeftType() {
		return leftType;
	}
	public void setLeftType(int leftType) {
		this.leftType = leftType;
	}
	public int getRightType() {
		return rightType;
	}
	public void setRightType(int rightType) {
		this.rightType = rightType;
	}
	public HeroNode(int no, String name) {
		this.no = no;
		this.name = name;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public HeroNode getLeft() {
		return left;
	}
	public void setLeft(HeroNode left) {
		this.left = left;
	}
	public HeroNode getRight() {
		return right;
	}
	public void setRight(HeroNode right) {
		this.right = right;
	}
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}
}

遍历线索化二叉树:

  1. 说明:对前面的中序线索化的二叉树,进行遍历
  2. 分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用新的方式遍历线索化二叉树,各个节点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。遍历的次序应当和中序遍历保持一致。
  3. 完整代码:
public class ThreadedBinaryTreeDemo {

    public static void main(String[] args) {
        //测试一把中序线索二叉树的功能
        HeroNode root = new HeroNode(1, "tom");
        HeroNode node2 = new HeroNode(3, "jack");
        HeroNode node3 = new HeroNode(6, "smith");
        HeroNode node4 = new HeroNode(8, "mary");
        HeroNode node5 = new HeroNode(10, "king");
        HeroNode node6 = new HeroNode(14, "dim");

        //二叉树,后面我们要递归创建, 现在简单处理使用手动创建
        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);

        //测试中序线索化
        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
        threadedBinaryTree.setRoot(root);
        threadedBinaryTree.threadedNodes();

        //测试: 以10号节点测试
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的前驱结点是 ="  + leftNode); //3
        System.out.println("10号结点的后继结点是="  + rightNode); //1

        //当线索化二叉树后,能在使用原来的遍历方法
        //threadedBinaryTree.infixOrder();
        System.out.println("使用线索化的方式遍历 线索化二叉树");
        threadedBinaryTree.threadedList(); // 8, 3, 10, 1, 14, 6

    }

}


//定义ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree {
    private HeroNode root;

    //为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
    //在递归进行线索化时,pre 总是保留前一个结点
    private HeroNode pre = null;

    public void setRoot(HeroNode root) {
        this.root = root;
    }

    //重载一把threadedNodes方法
    public void threadedNodes() {
        this.threadedNodes(root);
    }

    //遍历线索化二叉树的方法
    public void threadedList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while(node != null) {
            //循环的找到leftType == 1的结点,第一个找到就是8结点
            //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
            //处理后的有效结点
            while(node.getLeftType() == 0) {
                node = node.getLeft();
            }

            //打印当前这个结点
            System.out.println(node);
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while(node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();

        }
    }

    //编写对二叉树进行中序线索化的方法
    /**
     *
     * @param node 就是当前需要线索化的结点
     */
    public void threadedNodes(HeroNode node) {

        //如果node==null, 不能线索化
        if(node == null) {
            return;
        }

        //(一)先线索化左子树
        threadedNodes(node.getLeft());
        //(二)线索化当前结点[有难度]

        //处理当前结点的前驱结点
        //以8结点来理解
        //8结点的.left = null , 8结点的.leftType = 1
        if(node.getLeft() == null) {
            //让当前结点的左指针指向前驱结点
            node.setLeft(pre);
            //修改当前结点的左指针的类型,指向前驱结点
            node.setLeftType(1);
        }

        //处理后继结点
        if (pre != null && pre.getRight() == null) {
            //让前驱结点的右指针指向当前结点
            pre.setRight(node);
            //修改前驱结点的右指针类型
            pre.setRightType(1);
        }
        //!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
        pre = node;

        //(三)在线索化右子树
        threadedNodes(node.getRight());


    }

}

//先创建HeroNode 结点
class HeroNode {
    private int no;
    private String name;
    private HeroNode left; //默认null
    private HeroNode right; //默认null
    //说明
    //1. 如果leftType == 0 表示指向的是左子树, 如果 1 则表示指向前驱结点
    //2. 如果rightType == 0 表示指向是右子树, 如果 1表示指向后继结点
    private int leftType;
    private int rightType;


    public int getLeftType() {
        return leftType;
    }
    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }
    public int getRightType() {
        return rightType;
    }
    public void setRightType(int rightType) {
        this.rightType = rightType;
    }
    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }
    public int getNo() {
        return no;
    }
    public void setNo(int no) {
        this.no = no;
    }
    public String getName() {
        return name;
    }
    public void setName(String name) {
        this.name = name;
    }
    public HeroNode getLeft() {
        return left;
    }
    public void setLeft(HeroNode left) {
        this.left = left;
    }
    public HeroNode getRight() {
        return right;
    }
    public void setRight(HeroNode right) {
        this.right = right;
    }
    @Override
    public String toString() {
        return "HeroNode [no=" + no + ", name=" + name + "]";
    }
}

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玳宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值