Neo4j 安装、使用教程

一、Neo4j 的安装与配置

1、安装JDK

由于Neo4j是基于Java的图形数据库,运行Neo4j需要启动JVM进程,因此必须安装JAVA SE的JDK。配置 JDK环境,为以后能适应Springboot,请选择最低JDK1.8的环境。

2、安装Neo4j

下载地址:https://neo4j.com/download-center
我安装的是 Neo4j Community Edition 3.5.30,

若安装Neo4j 4.x 版本,需使用 jdk11

解压后的文件夹内容如图:
在这里插入图片描述

其中主要目录结构有
1、bin目录:用于存储Neo4j的可执行程序;
2、conf目录:用于控制Neo4j启动的配置文件;
3、data目录:用于存储核心数据库文件;
4、plugins目录:用于存储Neo4j的插件;

3、Neo4j环境变量配置

此电脑——>右键“属性”——>高级系统设置——>环境变量
设置主目录环境变量,在系统变量下,新建一个系统变量。

变量名 = NEO4J_HOME
变量值 = E:\Neo4j\neo4j-community-3.5.3 (这里设置为你自己的Neo4j主目录)

在这里插入图片描述
设置好后,点击确定。再找到你的系统变量Path(原先设置JDK时用到的)。新建一个值:%NEO4J_HOME%\bin
在这里插入图片描述

4、启动服务器

通过使用neo4j.bat文件启动服务器,该文件存放在主目录的bin文件夹中
在cmd中,输入neo4j.bat console并回车在这里插入图片描述
现在可以通过浏览器输入 http://localhost:7474/ ,访问服务器。初始的用户名和密码均是neo4j,输入密码,点击connect, 初次使用系统还会要求你改密码,到时候输入新密码即可。

二、Neo4j 使用教程

1、创建一个人物节点
CREATE (n:Person {name:'John'}) RETURN n

CREATE是创建操作,Person是标签,代表节点的类型。花括号{}代表节点的属性,属性类似Python的字典。这条语句的含义就是创建一个标签为Person的节点,该节点具有一个name属性,属性值是John。
在这里插入图片描述
2、继续来创建更多的人物节点,并分别命名

CREATE (n:Person {name:'Sally'}) RETURN n;
CREATE (n:Person {name:'Steve'}) RETURN n;
CREATE (n:Person {name:'Mike'}) RETURN n;
CREATE (n:Person {name:'Liz'}) RETURN n;
CREATE (n:Person {name:'Shawn'}) RETURN n;

在这里插入图片描述
3、创建地区节点

CREATE (n:Location {city:'Miami', state:'FL'});
CREATE (n:Location {city:'Boston', state:'MA'});
CREATE (n:Location {city:'Lynn', state:'MA'});
CREATE (n:Location {city:'Portland', state:'ME'});
CREATE (n:Location {city:'San Francisco', state:'CA'});![在这里插入图片描述](https://img-blog.csdnimg.cn/412494160edb421b86b1d03a03c2e9ae.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5Y2O55KD,size_20,color_FFFFFF,t_70,g_se,x_16)

在这里插入图片描述
如图所示,共有6个人物节点、5个地区节点,Neo4J贴心地使用不用的颜色来表示不同类型的节点。

4、接下来创建关系

MATCH (a:Person {name:'Liz'}), 
      (b:Person {name:'Mike'}) 
MERGE (a)-[:FRIENDS]->(b)

这里的方括号[]即为关系,FRIENDS为关系的类型。注意这里的箭头 -->是有方向的,表示是从a到b的关系。 如图,Liz和Mike之间建立了FRIENDS关系,通过Neo4J的可视化很明显的可以看出:
在这里插入图片描述

5、关系也可以增加属性

MATCH (a:Person {name:'Shawn'}), 
      (b:Person {name:'Sally'}) 
MERGE (a)-[:FRIENDS {since:2001}]->(b)

在这里插入图片描述
在关系中,同样的使用花括号{}来增加关系的属性,也是类似Python的字典,这里给FRIENDS关系增加了since属性,属性值为2001,表示他们建立朋友关系的时间。

6、接下来增加更多的关系

MATCH (a:Person {name:'Shawn'}), (b:Person {name:'John'}) MERGE (a)-[:FRIENDS {since:2012}]->(b);
MATCH (a:Person {name:'Mike'}), (b:Person {name:'Shawn'}) MERGE (a)-[:FRIENDS {since:2006}]->(b);
MATCH (a:Person {name:'Sally'}), (b:Person {name:'Steve'}) MERGE (a)-[:FRIENDS {since:2006}]->(b);
MATCH (a:Person {name:'Liz'}), (b:Person {name:'John'}) MERGE (a)-[:MARRIED {since:1998}]->(b);

在这里插入图片描述
7、然后,建立不同类型节点之间的关系-人物和地点的关系

MATCH (a:Person {name:'John'}), (b:Location {city:'Boston'}) MERGE (a)-[:BORN_IN {year:1978}]->(b)

这里的关系是BORN_IN,表示出生地,同样有一个属性,表示出生年份。

如图,在人物节点和地区节点之间,人物出生地关系已建立好。
在这里插入图片描述
8、同样建立更多人的出生地

MATCH (a:Person {name:'Liz'}), (b:Location {city:'Boston'}) MERGE (a)-[:BORN_IN {year:1981}]->(b);
MATCH (a:Person {name:'Mike'}), (b:Location {city:'San Francisco'}) MERGE (a)-[:BORN_IN {year:1960}]->(b);
MATCH (a:Person {name:'Shawn'}), (b:Location {city:'Miami'}) MERGE (a)-[:BORN_IN {year:1960}]->(b);
MATCH (a:Person {name:'Steve'}), (b:Location {city:'Lynn'}) MERGE (a)-[:BORN_IN {year:1970}]->(b);

在这里插入图片描述
9、至此,知识图谱的数据已经插入完毕,可以开始做查询了。

我们查询下所有在Boston出生的人物

MATCH (a:Person)-[:BORN_IN]->(b:Location {city:'Boston'}) RETURN a,b

在这里插入图片描述
10、查询所有对外有关系的节点

MATCH (a)-->() RETURN a

注意这里箭头的方向,返回结果不含任何地区节点,因为地区并没有指向其他节点(只是被指向)
在这里插入图片描述
11、查询所有有关系的节点

MATCH (a)--() RETURN a

在这里插入图片描述
12、查询所有对外有关系的节点,以及关系类型

MATCH (a)-[r]->() RETURN a.name, type(r)

在这里插入图片描述
13、查询所有有结婚关系的节点

MATCH (n)-[:MARRIED]-() RETURN n

在这里插入图片描述
14、创建节点的时候就建好关系

CREATE (a:Person {name:'Todd'})-[r:FRIENDS]->(b:Person {name:'Carlos'})

在这里插入图片描述
15、查找某人的朋友的朋友

MATCH (a:Person {name:'Mike'})-[r1:FRIENDS]-()-[r2:FRIENDS]-(friend_of_a_friend) RETURN friend_of_a_friend.name AS fofName

返回Mike的朋友的朋友:
在这里插入图片描述
16、增加/修改节点的属性

MATCH (a:Person {name:'Liz'}) SET a.age=34;
MATCH (a:Person {name:'Shawn'}) SET a.age=32;
MATCH (a:Person {name:'John'}) SET a.age=44;
MATCH (a:Person {name:'Mike'}) SET a.age=25;

这里,SET表示修改操作
在这里插入图片描述
17、删除节点的属性

MATCH (a:Person {name:'Mike'}) SET a.test='test'
MATCH (a:Person {name:'Mike'}) REMOVE a.test

删除属性操作主要通过 REMOVE

18、删除节点

MATCH (a:Location {city:'Portland'}) DELETE a

除节点操作是 DELETE

19、删除有关系的节点

MATCH (a:Person {name:'Todd'})-[rel]-(b:Person) DELETE a,b,rel

20、删除数据库中的图

MATCH (n) DETACH DELETE n

在这里插入图片描述

这里,MATCH 是匹配操作,而小括号() 代表一个节点node(可理解为括号类似一个圆形),括号里面的n为标识符。

出现这个错误的原因是在导入seaborn包时,无法从typing模块中导入名为'Protocol'的对象。 解决这个问题的方法有以下几种: 1. 检查你的Python版本是否符合seaborn包的要求,如果不符合,尝试更新Python版本。 2. 检查你的环境中是否安装了typing_extensions包,如果没有安装,可以使用以下命令安装:pip install typing_extensions。 3. 如果你使用的是Python 3.8版本以下的版本,你可以尝试使用typing_extensions包来代替typing模块来解决该问题。 4. 检查你的代码是否正确导入了seaborn包,并且没有其他导入错误。 5. 如果以上方法都无法解决问题,可以尝试在你的代码中使用其他的可替代包或者更新seaborn包的版本来解决该问题。 总结: 出现ImportError: cannot import name 'Protocol' from 'typing'错误的原因可能是由于Python版本不兼容、缺少typing_extensions包或者导入错误等原因造成的。可以根据具体情况尝试上述方法来解决该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [ImportError: cannot import name ‘Literal‘ from ‘typing‘ (D:\Anaconda\envs\tensorflow\lib\typing....](https://blog.csdn.net/yuhaix/article/details/124528628)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玳宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值