3.pandas简单使用

3.pandas

pandas的常用数据类型

  1. Series 一维,带标签数组
  2. DataFrame 二维,Series容器

pandas 显示所有行列

pd.set_option('display.max_columns', None)
#显示所有行
pd.set_option('display.max_rows', None)

pandas之读取外部数据

我们的这组数据存在csv中,我们直接使用pd. read_csv即可
和我们想象的有些差别,我们以为他会是一个Series类型,但是他是一个DataFrame,那么接下来我们就来了解这种数据类型
但是,还有一个问题:
对于数据库比如mysql或者mongodb中数据我们如何使用呢?
pd.read_sql(sql_sentence,connection)

1.Series

1.创建

In [59]: import string

In [60]: t = pd.Series(np.arange(10), index=list(string.ascii_uppercase[:10]))

In [61]: t
Out[61]:
A    0
B    1
C    2
D    3
E    4
F    5
G    6
H    7
I    8
J    9
dtype: int64

In [62]: type(t)
Out[62]: pandas.core.series.Series



In [63]: a = {string.ascii_uppercase[i]:i for i in range(10)}

In [64]: a
Out[64]:
{'A': 0,
 'B': 1,
 'C': 2,
 'D': 3,
 'E': 4,
 'F': 5,
 'G': 6,
 'H': 7,
 'I': 8,
 'J': 9}

In [65]: pd.Series(a)
Out[65]:
A    0
B    1
C    2
D    3
E    4
F    5
G    6
H    7
I    8
J    9
dtype: int64


# nan 在pandas 中是浮点型
In [67]: t = pd.Series(a, index=list(string.ascii_uppercase[5:20]))

In [68]: t
Out[68]:
F    5.0
G    6.0
H    7.0
I    8.0
J    9.0
K    NaN
L    NaN
M    NaN
N    NaN
O    NaN
P    NaN
Q    NaN
R    NaN
S    NaN
T    NaN
dtype: float64

2.切片和索引

In [71]: t
Out[71]:
A    0
B    1
C    2
D    3
E    4
F    5
G    6
H    7
I    8
J    9
dtype: int64

In [72]: t[2:10:2]
Out[72]:
C    2
E    4
G    6
I    8
dtype: int64

In [73]: t[2]
Out[73]: 2
In [76]: t[[2,3,6]]
Out[76]:
C    2
D    3
G    6
dtype: int64

In [77]: t[t>4]
Out[77]:
F    5
G    6
H    7
I    8
J    9
dtype: int64

In [78]: t["F"]
Out[78]: 5

In [79]: t[["A","F"]]
Out[79]:
A    0
F    5
dtype: int64

切片:直接传入start end 或者步长
索引:一个的时候直接传入序号或者index,多个的时候传入序号或者index的列表

3.索引和值

In [80]: t.index
Out[80]: Index(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'], dtype='object')

In [81]: t.values
Out[81]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [82]: type(t.index)
Out[82]: pandas.core.indexes.base.Index

In [83]: type(t.valuse)
Out[85]: numpy.ndarray

Series 本质上由两个数组组成,一个数组构成对象的键(index,索引),一个数组构成对象的值(values),键->值
ndarray的很多方法都可以运用于Series类型,比如argmax, clip
Series有where方法,但是和ndarray不同

2.DataFrame

In [86]: t=pd.DataFrame(np.arange(12).reshape((3, 4)))

In [87]: t
Out[87]:
   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

DataFrame对象既有行索引,又有列索引
行索引,表明不同行,横向索引,叫index,0轴,axis=0
列索引,表名不同列,纵向索引,叫columns,1轴,axis=1

DataFrame基础属性

In [89]: df.shape 行数 列数
Out[89]: (3, 4)

In [90]: df.dtypes # 列数据类型
Out[90]:
0    int64
1    int64
2    int64
3    int64
dtype: object

In [91]: df.ndim # 数组维度
Out[91]: 2

In [92]: df.columns # 列索引
Out[92]: RangeIndex(start=0, stop=4, step=1)
In [93]: df.values # 対象值 二维ndarry数组

DataFrame整体情况查询

In [94]: df.head(2) # 头部几行
Out[94]:
   0  1  2  3
0  0  1  2  3
1  4  5  6  7

In [95]: df.tail(2) # 末尾几行
Out[95]:
   0  1   2   3
1  4  5   6   7
2  8  9  10  11

In [96]: df.info() # 相关信息概览:行数,列数。列索引,列非空值个数,列类型,内存占用
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 4 columns):
 #   Column  Non-Null Count  Dtype
---  ------  --------------  -----
 0   0       3 non-null      int64
 1   1       3 non-null      int64
 2   2       3 non-null      int64
 3   3       3 non-null      int64
dtypes: int64(4)
memory usage: 224.0 bytes

In [97]: df.describe()     # 快速综合统计结果:基数,均值,标准差,最大值,四分位数,最小值
Out[97]:
         0    1     2     3
count  3.0  3.0   3.0   3.0
mean   4.0  5.0   6.0   7.0
std    4.0  4.0   4.0   4.0
min    0.0  1.0   2.0   3.0
25%    2.0  3.0   4.0   5.0
50%    4.0  5.0   6.0   7.0
75%    6.0  7.0   8.0   9.0
max    8.0  9.0  10.0  11.0

1.取行或者列

df_sorted = df.sort_values(by="Count_AnimalName") # 按照字段df_sorted[:100]

2.loc

还有更多的经过pandas优化过的选择方式:

  1. df.loc 通过标签索引行数据
  2. df.iloc 通过位置获取行数据
In [99]: t = pd.DataFrame(np.arange(12).reshape((3, 4)), index=list(string.ascii_uppercase[:3]), columns=list(string.a
    ...: scii_uppercase[-4:]))

In [100]: t
Out[100]:
   W  X   Y   Z
A  0  1   2   3
B  4  5   6   7
C  8  9  10  11

In [101]: t.loc["A", "W"] # 选择值
Out[101]: 0

In [102]: t.loc["A", ["W", "Y"]]
Out[102]:
W    0
Y    2
Name: A, dtype: int64

In [103]: type(t.loc["A", ["W", "Y"]])
Out[103]: pandas.core.series.Series

In [104]: t.loc[["A", "C"], ["W", "Z"]]   # 选择间隔的多行
Out[104]:
   W   Z
A  0   3
C  8  11
In [107]: t.loc["A":, ["W", "Z"]] # 选择切片
Out[107]:
   W   Z
A  0   3
B  4   7
C  8  11

3.iloc

In [108]: t
Out[108]:
   W  X   Y   Z
A  0  1   2   3
B  4  5   6   7
C  8  9  10  11

In [109]: t.iloc[1:3, [2,3]]
Out[109]:
    Y   Z
B   6   7
C  10  11

In [110]: t.iloc[1:3, 1:3]
Out[110]:
   X   Y
B  5   6
C  9  10

赋值修改:

In [115]: t.iloc[1:2, 0:2]=100

In [116]: t
Out[116]:
     W    X    Y   Z
A    0    1  100   3
B  100  100    6   7
C    8    9   10  11

In [111]: t.loc["A", "Y"] =100

4.布尔索引

  • & 且
  • | 或

注:不同条件间要用括号括起来

回到之前狗的名字的问题上,假如我们想找到所有的使用次数超过800的狗的名字,应该怎么选择?
df[df["count"]>800]

回到之前狗的名字的问题上,假如我们想找到所有的使用次数超过700并且名字的字符串的长度大于4的狗的名字,应该怎么选择?
df[(df["row_name"].str.len()>4)&(df["count"]>800)]

5.字符串方法

![image.png](https://img-blog.csdnimg.cn/img_convert/041fc8a97d150e9e0153b99a15fe7dbf.png#align=left&display=inline&height=770&margin=[object Object]&name=image.png&originHeight=770&originWidth=941&size=356054&status=done&style=none&width=941)

6.缺失数据的处理

对于NaN的数据,在numpy中我们是如何处理的?
在pandas中我们处理起来非常容易
判断数据是否为NaN:pd.isnull(df),pd.notnull(df)
处理方式1:删除NaN所在的行列dropna (axis=0, how=‘any’, inplace=False)
处理方式2:填充数据,t.fillna(t.mean()),t.fiallna(t.median()),t.fillna(0)
处理为0的数据:t[t==0]=np.nan
当然并不是每次为0的数据都需要处理
计算平均值等情况,nan是不参与计算的,但是0会

假设现在我们有一组从2006年到2016年1000部最流行的电影数据,我们想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?
数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data

7.pandas常用统计方法

rating_mean = df["Rating"].mean()
temp_list = df["Actors"].str.split(",").tolist()
nums = set([i for j in temp_list for i in j])

max_runtime = df["Runtime (Minutes)"].max()
max_runtime_index = df["Runtime (Minutes)"].armax()
min_runtime = df["Runtime (Minutes)"].min()
min_runtime_index = df["Runtime (Minutes)"].armin()
runtime_median = df["Runtime (Minutes)"].median()



df["mean"] = df.apply(lambda x:x.mean(), axis=1)
c = df.apply(lambda x:x.mean(), axis=0)
df1 = df.append(c, ignore_index=True)
df1.reindex()
print(df1)


     a    b     c     d  mean
0  0.0  1.0   2.0   3.0   1.5
1  4.0  5.0   6.0   7.0   5.5
2  8.0  9.0  10.0  11.0   9.5
3  4.0  5.0   6.0   7.0   5.5

8.数据合并之join

join:默认情况下他是把行索引相同的数据合并到一起

In [35]: t
Out[35]:
    q   w   e   r   t
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19

In [36]: t1 = pd.DataFrame(np.arange(20).reshape((5, 4)), index=["a", "b", "c", "d", "e"], columns=["1", "2",
    ...:  "3", "4"])

In [37]: t1
Out[37]:
    1   2   3   4
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11
d  12  13  14  15
e  16  17  18  19

In [38]: t
Out[38]:
    q   w   e   r   t
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19

In [39]: t1.join(t)
Out[39]:
    1   2   3   4     q     w     e     r     t
a   0   1   2   3   0.0   1.0   2.0   3.0   4.0
b   4   5   6   7   5.0   6.0   7.0   8.0   9.0
c   8   9  10  11  10.0  11.0  12.0  13.0  14.0
d  12  13  14  15  15.0  16.0  17.0  18.0  19.0
e  16  17  18  19   NaN   NaN   NaN   NaN   NaN

In [40]: t.join(t1)
Out[40]:
    q   w   e   r   t   1   2   3   4
a   0   1   2   3   4   0   1   2   3
b   5   6   7   8   9   4   5   6   7
c  10  11  12  13  14   8   9  10  11
d  15  16  17  18  19  12  13  14  15

9.数据合并之merge

In [41]: t
Out[41]:
    q   w   e   r   t
a   0   1   2   3   4
b   5   6   7   8   9
c  10  11  12  13  14
d  15  16  17  18  19

In [42]: t1
Out[42]:
    1   2   3   4
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11
d  12  13  14  15
e  16  17  18  19

In [43]: t.merge(t1, left_on='r', right_on='4') # 默认的合并方式inner,并集

Out[43]:
   q  w  e  r  t  1  2  3  4
0  0  1  2  3  4  0  1  2  3

In [44]: t.merge(t1, left_on='r', right_on='4', how='inner')
Out[44]:
   q  w  e  r  t  1  2  3  4
0  0  1  2  3  4  0  1  2  3

In [45]: t.merge(t1, left_on='r', right_on='4', how='outer') # merge outer,交集,NaN补全

Out[45]:
      q     w     e     r     t     1     2     3     4
0   0.0   1.0   2.0   3.0   4.0   0.0   1.0   2.0   3.0
1   5.0   6.0   7.0   8.0   9.0   NaN   NaN   NaN   NaN
2  10.0  11.0  12.0  13.0  14.0   NaN   NaN   NaN   NaN
3  15.0  16.0  17.0  18.0  19.0   NaN   NaN   NaN   NaN
4   NaN   NaN   NaN   NaN   NaN   4.0   5.0   6.0   7.0
5   NaN   NaN   NaN   NaN   NaN   8.0   9.0  10.0  11.0
6   NaN   NaN   NaN   NaN   NaN  12.0  13.0  14.0  15.0
7   NaN   NaN   NaN   NaN   NaN  16.0  17.0  18.0  19.0

In [46]: t.merge(t1, left_on='r', right_on='4', how='left') # merge left,左边为准,NaN补全

Out[46]:
    q   w   e   r   t    1    2    3    4
0   0   1   2   3   4  0.0  1.0  2.0  3.0
1   5   6   7   8   9  NaN  NaN  NaN  NaN
2  10  11  12  13  14  NaN  NaN  NaN  NaN
3  15  16  17  18  19  NaN  NaN  NaN  NaN

In [47]: t.merge(t1, left_on='r', right_on='4', how='right') # merge right,右边为准,NaN补全

Out[47]:
     q    w    e    r    t   1   2   3   4
0  0.0  1.0  2.0  3.0  4.0   0   1   2   3
1  NaN  NaN  NaN  NaN  NaN   4   5   6   7
2  NaN  NaN  NaN  NaN  NaN   8   9  10  11
3  NaN  NaN  NaN  NaN  NaN  12  13  14  15
4  NaN  NaN  NaN  NaN  NaN  16  17  18  19

现在我们有一组关于全球星巴克店铺的统计数据,如果我想知道美国的星巴克数量和中国的哪个多,或者我想知道中国每个省份星巴克的数量的情况,那么应该怎么办?
思路:遍历一遍,每次加1 ???
数据来源:https://www.kaggle.com/starbucks/store-locations/data

10.分组和聚合

grouped = df.groupby(by=“columns_name”)
grouped是一个DataFrameGroupBy对象,是可迭代的
grouped中的每一个元素是一个元组
元组里面是(索引(分组的值),分组之后的DataFrame)
DataFrameGroupBy对象有很多经过优化的方法

![image.png](https://img-blog.csdnimg.cn/img_convert/739299dbf56f61868366c4431bae3269.png#align=left&display=inline&height=320&margin=[object Object]&name=image.png&originHeight=320&originWidth=670&size=103977&status=done&style=none&width=670)

如果我们需要对国家和省份进行分组统计,应该怎么操作呢?
grouped = df.groupby(by=[df[“Country”],df[“State/Province”]])
很多时候我们只希望对获取分组之后的某一部分数据,或者说我们只希望对某几列数据进行分组,这个时候我们应该怎么办呢?
获取分组之后的某一部分数据:
df.groupby(by=[“Country”,“State/Province”])[“Country”].count()
对某几列数据进行分组:
df[“Country”].groupby(by=[df[“Country”],df[“State/Province”]]).count()
观察结果,由于只选择了一列数据,所以结果是一个Series类型
如果我想返回一个DataFrame类型呢?
t1 = df[[“Country”]].groupby(by=[df[“Country”],df[“State/Province”]]).count()
t2 = df.groupby(by=[“Country”,“State/Province”])[[“Country”]].count()
以上的两条命令结果一样
和之前的结果的区别在于当前返回的是一个DataFrame类型
那么问题来了:
和之前使用一个分组条件相比,当前的返回结果的前两列是什么?

t = df.groupby(["a", "b"]).agg({"c":"sum", "d":"mean"}).reset_index(drop=False)

11.索引和复合索引

简单的索引操作:

  • 获取index:df.index
  • 指定index :df.index = [‘x’,‘y’]
  • 重新设置index : df.reindex(list(“abcedf”))
  • 指定某一列作为index :df.set_index(“Country”,drop=False)
  • 返回index的唯一值:df.set_index(“Country”).index.unique()

假设a为一个DataFrame,那么当a.set_index([“c”,“d”])即设置两个索引的时候是什么样子的结果呢?

a = pd.DataFrame({‘a’: range(7),‘b’: range(7, 0, -1),‘c’: [‘one’,‘one’,‘one’,‘two’,‘two’,‘two’, ‘two’],‘d’: list(“hjklmno”)})

12.Series复合索引

In [156]: t
Out[156]:
   W  X   Y   Z  Q
A  e  1   2   3  s
B  e  5   6   7  s
C  e  9  10  11  s

In [157]: c = t.set_index(["W", "Q"])["X"]

In [158]: c
Out[158]:
W  Q
e  s    1
   s    5
   s    9
Name: X, dtype: int64
In [162]: c.swaplevel()["s"]
Out[162]:
W
e    1
e    5
e    9
Name: X, dtype: int64

In [163]:

In [163]:

In [163]: c.swaplevel()
Out[163]:
Q  W
s  e    1
   e    5
   e    9
Name: X, dtype: int64

13.DataFrame复合索引

In [164]: t
Out[164]:
   W  X   Y   Z  Q
A  e  1   2   3  s
B  e  5   6   7  s
C  e  9  10  11  s

In [165]: x = t.set_index(["W", "X"])["Y"]
In [167]: x
Out[167]:
W  X
e  1     2
   5     6
   9    10
Name: Y, dtype: int64

In [168]: x.loc["e"]
Out[168]:
X
1     2
5     6
9    10
Name: Y, dtype: int64
In [170]: x.loc["e"][1]
Out[170]: 2

In [171]: x
Out[171]:
W  X
e  1     2
   5     6
   9    10
Name: Y, dtype: int64

In [172]: x.swaplevel().loc[5]
Out[172]:
W
e    6
Name: Y, dtype: int64

现在我们有全球排名靠前的10000本书的数据,那么请统计一下下面几个问题:
1.不同年份书的数量
2.不同年份书的平均评分情况
收据来源:https://www.kaggle.com/zygmunt/goodbooks-10k
现在我们有2015到2017年25万条911的紧急电话的数据,请统计出出这些数据中不同类型的紧急情况的次数,如果我们还想统计出不同月份不同类型紧急电话的次数的变化情况,应该怎么做呢?
数据来源:https://www.kaggle.com/mchirico/montcoalert/data

14.pandas中的时间序列

In [177]: pd.date_range(start='20200101', end='20200120', periods=None, freq=
     ...: "D")
Out[177]:
DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',
               '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08',
               '2020-01-09', '2020-01-10', '2020-01-11', '2020-01-12',
               '2020-01-13', '2020-01-14', '2020-01-15', '2020-01-16',
               '2020-01-17', '2020-01-18', '2020-01-19', '2020-01-20'],
              dtype='datetime64[ns]', freq='D')

In [179]: pd.date_range(start='20200101', end='20200920', periods=None, freq=
     ...: "BM")
Out[179]:
DatetimeIndex(['2020-01-31', '2020-02-28', '2020-03-31', '2020-04-30',
               '2020-05-29', '2020-06-30', '2020-07-31', '2020-08-31'],
              dtype='datetime64[ns]', freq='BM')

In [180]: pd.date_range(start='20200101', end='20200920', periods=None, freq=
     ...: "WOM-3FRI")
Out[180]:
DatetimeIndex(['2020-01-17', '2020-02-21', '2020-03-20', '2020-04-17',
               '2020-05-15', '2020-06-19', '2020-07-17', '2020-08-21',
               '2020-09-18'],
              dtype='datetime64[ns]', freq='WOM-3FRI')

In [181]:

15.关于频率的更多缩写

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gxim4yf6-1607510406958)(https://cdn.nlark.com/yuque/0/2020/png/2355152/1606124356624-ec4514be-bc16-4deb-a3b6-edc5113a7fd6.png#align=left&display=inline&height=858&margin=%5Bobject%20Object%5D&name=image.png&originHeight=858&originWidth=1333&size=306472&status=done&style=none&width=1333)]

16.在DataFrame中使用时间序列

index=pd.date_range(“20170101”,periods=10)
df = pd.DataFrame(np.random.rand(10),index=index)
回到最开始的911数据的案例中,我们可以使用pandas提供的方法把时间字符串转化为时间序列
df[“timeStamp”] = pd.to_datetime(df[“timeStamp”],format="")
format参数大部分情况下可以不用写,但是对于pandas无法格式化的时间字符串,我们可以使用该参数,比如包含中文

 '2020-06-19', '2020-07-17', '2020-08-21',
               '2020-09-18', '2020-10-16'],
              dtype='datetime64[ns]', freq='WOM-3FRI')

In [184]: index=pd.date_range("20170101",periods=10)
     ...:

In [185]: index
Out[185]:
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
               '2017-01-09', '2017-01-10'],
              dtype='datetime64[ns]', freq='D')

In [186]: df = pd.DataFrame(np.random.rand(10),index=index)
     ...:

In [187]: df
Out[187]:
                   0
2017-01-01  0.371337
2017-01-02  0.187369
2017-01-03  0.976766
2017-01-04  0.836943
2017-01-05  0.622517
2017-01-06  0.337794
2017-01-07  0.385050
2017-01-08  0.216031
2017-01-09  0.223580
2017-01-10  0.102507

17.pandas重采样

重采样:指的是将时间序列从一个频率转化为另一个频率进行处理的过程,将高频率数据转化为低频率数据为降采样,低频率转化为高频率为升采样
pandas提供了一个resample的方法来帮助我们实现频率转化

In [188]: t = pd.DataFrame(np.random.uniform(10, 50, (100, 1)), index=pd.date
     ...: _range(start='20170101', periods=100))

In [189]: t
Out[189]:
                    0
2017-01-01  35.280383
2017-01-02  47.925842
2017-01-03  15.328393
2017-01-04  16.277246
2017-01-05  21.440968
...               ...
2017-04-06  38.093319
2017-04-07  32.995266
2017-04-08  34.061548
2017-04-09  26.361549
2017-04-10  36.474314

[100 rows x 1 columns]

In [190]: t.resample("M").mean()
Out[190]:
                    0
2017-01-31  28.750880
2017-02-28  29.117664
2017-03-31  31.109807
2017-04-30  32.058395

In [191]: t.resample("QS-JAN").count()
Out[191]:
             0
2017-01-01  90
2017-04-01  10

In [192]: t.resample("10D").count()
Out[192]:
             0
2017-01-01  10
2017-01-11  10
2017-01-21  10
2017-01-31  10
2017-02-10  10
2017-02-20  10
2017-03-02  10
2017-03-12  10
2017-03-22  10
2017-04-01  10

现在我们有北上广、深圳、和沈阳5个城市空气质量数据,请绘制出5个城市的PM2.5随时间的变化情况
观察这组数据中的时间结构,并不是字符串,这个时候我们应该怎么办?
数据来源: https://www.kaggle.com/uciml/pm25-data-for-five-chinese-cities

18.PeriodIndex

之前所学习的DatetimeIndex可以理解为时间戳
那么现在我们要学习的PeriodIndex可以理解为时间段
periods = pd.PeriodIndex(year=data[“year”],month=data[“month”],day=data[“day”],hour=data[“hour”],freq=“H”)
那么如果给这个时间段降采样呢?
data = df.set_index(periods).resample(“10D”).mean()

### 回答1: Pandas是一个在Python使用的强大数据处理和分析库。它通过提供高性能、灵活且易于使用数据结构和数据分析工具,使数据的操作变得简单快捷。Pandas使用的主要数据结构是DataFrame和Series。 DataFrame是一个二维的表格数据结构,类似于Excel中的一张表,它可以方便地存储、处理和操作数据。Series是一个一维带标签的数组数据结构,可以看作是一个列。在Pandas中,我们可以使用DataFrame和Series来对数据各种各样的操作,如数据的读取、写入、删除、切片、过滤、聚合等。 在进数据处理和分析时,Pandas提供了丰富的函数和方法,如数据的排序、合并、重塑、统计计算、数据可视化等。Pandas还可以与其他常用的库如NumPy、Matplotlib、Scikit-learn等相结合,使得数据分析的过程更加流畅和高效。 当我们想要进数据的清洗、转化、整理或者进数据分析时,Pandas就能帮助我们快速、灵活地实现这些任务。无论是处理大规模的数据集还是小规模的数据集,使用Pandas都能提供高性能的数据处理和分析能力。 使用Pandas数据处理和分析时,通常需要将数据读取到DataFrame中,然后利用DataFrame和Series提供的方法进各种操作和计算。同时,Pandas还提供了丰富的文档和教程,供用户学习和参考。 总之,Pandas是一款功能强大、易于使用数据处理和分析工具,它为我们提供了丰富的功能和方法,使得数据的操作和分析变得简单方便。如果想要学习如何使用Pandas,可以阅读Pandas的官方文档或者参考一些在线教程,这些资源会帮助我们更好地掌握Pandas使用方法和技巧。 ### 回答2: PDF是一种常见的电子文档格式,它保留了原始文档的格式和排版,无论在哪个操作系统上打开,文档的外观都会保持一致。PDF教程是指关于如何使用和操作PDF文件的指南和教学材料。 Pandas是一个开源的数据分析数据处理库,它提供了丰富的数据结构和数据处理工具,使得数据分析任务变得更加简单和高效。Pandas提供了两个主要的数据结构,即Series和DataFrame,用来处理一维和二维数据。除了基本的数据操作和处理功能外,Pandas还提供了很多高级功能,如数据清洗、数据变换、数据合并等。 Pandas教程是一种指导用户学习和使用Pandas库的教育资源。通过Pandas教程,用户可以学习如何创建和管理数据结构,如何进数据的索引和切片,如何进数据的过滤和排序,如何进数据的聚合和统计分析等。同时,Pandas教程还会介绍一些常见的数据分析任务,并提供相应的解决方案和实例代码。 无论是初学者还是有经验的数据分析师,通过学习Pandas教程可以更好地掌握和运用Pandas库,提升数据分析能力。Pandas教程通常会涵盖基本的使用方法和技巧,同时还会深入讲解数据处理和数据分析的原理和技术,帮助用户理解和掌握数据分析的核心概念和方法。 总之,PDF教程是关于如何使用和操作PDF文件的指南,而Pandas教程则是关于如何使用和运用Pandas库进数据分析和处理的指南。通过学习这些教程,用户可以快速入门和提升相关技能,从而更好地完成自己的工作和任务。 ### 回答3: PDF是Portable Document Format的缩写,是一种用于展示和交换文档的文件格式。它能够在不同操作系统和软件环境中保持文档的格式和布局一致,无论在电脑、手机或平板上都能方便地阅读和打印。许多教程和学习资料也以PDF格式发布,以便读者可以快速下载和学习。 Pandas是一个强大的开源数据处理库,它是Python编程语言的一个重要组件。Pandas提供了高效的数据结构和数据分析工具,可以轻松地处理各种数据集。它的核心数据结构是Series和DataFrame,可以方便地进数据选择、过滤、合并、整理等操作。Pandas还提供了各种分组、聚合、数据透视表等功能,可以帮助我们更好地理解和分析数据。 如果想学习Pandas,可以通过阅读Pandas的教程来快速入门。有许多在线教程和书籍可以提供详细的指导和例子,帮助读者逐步学习和掌握Pandas的各种功能和用法。这些教程通常会从基础的数据结构、数据导入和处理开始,逐渐深入讲解DataFrame的操作和高级功能,以及Pandas数据清洗、分析和可视化等方面的应用。 在学习Pandas时,可以通过实践来加深理解。可以选择一些真实的数据集,尝试使用Pandas来进数据处理和分析,如数据清洗、数据转换、数据合并等操作。同时,还可以参考Pandas的官方文档和社区资源,以便及时了解和学习最新的功能和技术。 总之,通过阅读PDF格式的Pandas教程,我们可以快速入门和掌握Pandas的各种功能和用法,从而更好地处理和分析数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值