Agent的基本概念

Agent的基本概念

Agent概述

Agent是一个自动推理和决策引擎。它接受用户输入/查询,并可以做出执行该查询的内部决策,以便返回正确的结果。关键代理组件可以包括但不限于:

  • 将一个复杂的问题分解为较小的问题
  • 选择要使用的外部工具 + 提供调用该工具的参数
  • 规划一组任务
  • 将之前完成的任务存储在内存模块中

LlamaIndex 为构建代理提供了一个全面的框架。这包括以下组件:

  • 使用具有高级工具的代理来构建代理 RAG 和工作流自动化用例
  • 用于构建和调试代理的低级组件
  • 可用作独立模块的核心代理成分:查询规划、工具使用等。

Agent的使用模式

再llamaIndex中Agent的使用范式如下:

1.定义工具函数:定义需要实现某个功能的函数。

2.把工具函数添加到FunctionTool对象中:把功能函数包裹到FunctionTool对象中。

3.构造LLM模型对象,并初始化LLM:构造和初始化LLM对象。

4.初始化ReAct Agent,也就是ReActAgent对象:初始化ReActAgent对象,该对象封装了一个Agent引擎

代码样例如下:

from llama_index.core.tools import FunctionTool
from llama_index.llms.openai import OpenAI
from llama_index.core.agent import ReActAgent


# define sample Tool
def multiply(a: int, b: int) -> 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值