讲师:邱岳
1. 什么是数据分析,以及为什么要数据分析
- 通过对数据进行整理加工获得信息和知识,从而了解产品的生存情况、发现潜在机会、引导和支撑产品与运营决策、验证策略效果。
- 数据是互联网产品经理的福音,也是改变互联网产品经理与传统软件产品经理 / 消费产品经理工作性质的核心元素。实时 - 精确 - 完善 - 结构化
- 用数据而非直觉:避免决策视角狭窄、避免无依据决策。让决策变宽、变扎实
- 立场和逻辑之争永无止境,数据加逻辑聊天 一招毙命。
2. 几个与数据分析有关的故事
- 半小时之内撤下对用户转化率有影响的特性;
- Google 的 41 种蓝色和 $200 Million的收益
- 按钮颜色也能带来收益区别?
3. 数据分析的常见工具
- GoogleAnalytics / MixPanel / Growing IO / Sensors Data / 友盟
- 小程序:小程序数据助手 / 阿拉丁
- Tableau / Excel / Python / Google Sheets / SQL
- R / MatLab …
重新认识Excel几个关键词: Excel 公式、透视表、VBA、Google Script、Python Excel
4. 数据分析的执行过程
- 数据规划(设定目标)
- 数据埋点 / 记录 (技术支持与实现)
- 数据收集与整理(原始数据 --> 结构化数据)
- 数据统计与分析(从数据 --> 信息 / 知识)
- 结论或行动(信息 --> 决策 / 行动)
5. 数据规划 --> 设定目标
- 反应产品 / 功能的运转情况
☞ 选定关键指标,每天盯住 - 寻找流程瓶颈点或新的产品机会
☞ 行为路径,流量漏斗 - 提供产品、运营决策支撑
☞ 进行 A / B 测试
☞ 设定策略水位数值(双十一晚上大促的时候,发大红包,促成交易。根据数据给指定用户发红包) - 对具体的产品运营策略提供效果追踪
4.1 如何选关键指标
- 小心虚荣指标 (比如某个大V的推广)
- 与利益相关者的价值有关系吗?(产品经理看功能的使用频率,投资人或老板看 GMV)
- 这个数字变好就等于产品变好吗?(某个功能多弹了一个界面,使PV增加)
- 大家能交流吗?(关注指标的变化)
- 提前发现问题还是滞后发现问题?(用户试用频率降低,就说明产品开始走下坡路)
- 有信息吗?能撬动吗?(比如把用户拉回来,用优质的文章吸引用户)
5. 数据埋点
- 一般说到数据埋点,都指的是行为数据的收集;
- 本质上是一个带了各种各样线索的记录请求,是无状态的;
- 数据埋点需求,与其描述埋点的方案,不如告诉 BI 或工程师你想干什么;
- 大部分的数据埋点需求基于事件(页面访问也算事件),列出想要的时间列表和分类即可;
- 很难一次埋点,就全埋对,从小事开始埋,比如一个按钮,然后逐渐研究更大的故事;
- 若公司存在完善的埋点和数据收集流程与规范,以上都不算。
6. 数据收集与整理
- 将原始的异构数据,整理为可以进行筛选 / 统计 / 处理的结构化数据;
- 这里的大部分工作都是数据工程师 / 数据工具完成的,这一步产品经理介入不多;
6.1 怎么收集竞争对手的数据? 怎么收集行业数据?
- 用QuestMobile
- 注册用户id
- Job Description
- 竞争对手的员工过来面试
报告:
7. 数据统计与分析
- 指标:某一件事情的度量数值,比如用户量、访问量、访问时长、转化率等,通常与具体业务的中间目标或最终目标直接相关。
- 维度:对指标进行不同细分的方式,比如用户量可以分为新用户、老用户、安卓用户、iOS用户、付费用户免费用户等,不同的细分方式,代表了不同的分析角度。
8. 结论或行动
- 数据分析要指向一个目标,信息 / 知识 / 决策 / 原则;
- 【目标】是数据分析的起点,也是终点;
- 对外:数据报告、数据洞察、业务策略结论;
- 对内:行业认知、做事的经验和原则;
9. 数据分析的思路和框架
-
偏向以用户、行为为核心:用户是谁、从哪里来、到哪里去;
-
偏向流量:流量成本、变现效率、可持续性;
-
偏向卖货:流量、转化、毛利;
-
偏向 Saas: 客户分类、留存与激活、收入规模与效率;
-
平台型产品:各角色利益博弈、货币化率;
-
偏向用户行为:用户属性、用户行为、用户量、关键路径转化率(用户产品)
-
偏向流量:流量成本、流量结构、变现效率、可持续性(流量产品)
-
偏向社区:用户量、用户粘性、内容生产、内容消费、分发效率(社区)
-
偏向平台:供求平衡、基尼系数、货币化率(市场/Marketplace)
-
偏向 SaaS(Software as a Service):客户分类、留存与激活、收入规模与效率(SaaS)
-
偏向卖货:流量、转化、毛利(电商)
-
偏向企业:业务利益、用户行为、流量成本、客户满意度(To B/ To G)
10. 数据分析对象
- 用户属性数据:一组画像;
- 用户行为数据:一张地图;
- 业务数据:一堆图标;
- 财务数据:钱;
- 行业数据:几个数字;
- 宏观数据;
11. 数据分析常见指标与释义
- 用户属性数据 - 技术参数、地理位置、年龄、性别、地区…
- 用户行为数据 - PV(Page View)、UV (User View)、(PV/UV) (网站或App的总PV / UV)、VV (Video View)、UPV、DAU (Daily Active User)、MAU (Month Active User)、(DAU/MAU) (一个用户一个月来30次,那就是30)、WAU (Weekly Active User)、AAC、MAC、WAC、CTR、留存 (新增留存、次日留存)、来源、访问时长…
- 业务数据 - (跟你相关)如:课程数量、训练营数量、订单数、发帖量、包裹数…
- 财务数据 - GMV(Gross merchandise value)、ARPU()、LTV、客单价、复购率、转化率、Take Rate…
- 行业数据 - TAM、CAC、TAC…
- 宏观数据 - 行业时长规模、GDP 占比。
GMV 包括了下单但未付款的数据,下单但是退货的也算。行业惯例。
12. 数据分析常见指标与释义
- 最重要的是,有你自己的指标定义,而不是一个业界通行的【虚荣指标】。
- 所有的指标应该在脑海中组成一张【数据大图】,知道它们之间的关系;
- 让数据成为自己的语言,用数据重构直觉,而不是用情绪和好恶来构建直觉;
13. 不是作业的作业
- PDD 的财报,对比京东和阿里,关注 AAC、MAC、MAU、GMV、Take Rate.
- 财报查看券商,sec --> https://en.wikipedia.org/wiki/U.S._Securities_and_Exchange_Commission
- https://sec.report/