11 几何(曲线与曲面)
贝塞尔曲线
定义
贝塞尔曲线:由控制点和线段组成的曲线,控制点是可拖动的支点。
如图,蓝色为贝塞尔曲线,p1, p2, p3为控制点,曲线和初始与终止端点相切,并且经过起点p0与终点p3。
de Casteljau Algorithm
de Casteljau算法描述了如何用多个点画出一条贝塞尔曲线。
其核心是线性插值和递归。
贝塞尔曲线的定义很像参数方程,给定一个参数t(范围为0-1)就能确定贝塞尔曲线上的一点,倘若取完所有t值,就能得到完整的贝塞尔曲线。
一阶贝塞尔曲线
二阶贝塞尔曲线
三阶贝塞尔曲线
代数式表达
将贝塞尔曲线展开可以得到n阶贝塞尔曲线的代数表达式:
注:
性质
-
必定经过起始与终止控制点
-
必定经与起始与终止线段相切
-
具有仿射变换性质,可以通过移动控制点移动整条曲线
-
凸包性质,曲线一定不会超出所有控制点构成的多边形范围
-
- 凸包:墙上许多钉子,用一条橡皮筋包住最外边的钉子,再松手,橡皮筋收缩后的外框就是凸包。
- 凸包:墙上许多钉子,用一条橡皮筋包住最外边的钉子,再松手,橡皮筋收缩后的外框就是凸包。
分段贝塞尔曲线
传统贝塞尔曲线的缺点:当控制点多的时候不好控制曲线的形状。
分段贝塞尔曲线:将一条高次曲线分成多条低次曲线的拼接,其中用的最多的便是用很多的3次曲线来拼接。
贝塞尔曲面
以4 * 4 控制点的贝塞尔曲面为例:
- 在这4个控制点之下利用第一个参数 u 运用第一章的计算贝塞尔曲线的方法得到蓝色点,因为有4列,所以一共可以得到如图所示的4个蓝色点。(灰色曲线分别为每列4个点所对应的贝塞尔曲线)
- 在得到4个蓝色顶点之后,在这四个蓝色顶点的基础之下利用第二个参数 v 便可以成功得出贝塞尔曲面上一个点
- 遍历所有的 u,v值就可以成功得到一个贝塞尔曲面