11 Games101 - 笔记 - 几何(曲线与曲面)

本文详细介绍了贝塞尔曲线的定义、deCasteljau算法、不同阶数的实现、代数表达式、性质以及分段贝塞尔曲线的使用,还涉及了贝塞尔曲面的构建方法,特别是4x4控制点的应用。
摘要由CSDN通过智能技术生成

11 几何(曲线与曲面)

贝塞尔曲线

定义

贝塞尔曲线:由控制点和线段组成的曲线,控制点是可拖动的支点。
img
如图,蓝色为贝塞尔曲线,p1, p2, p3为控制点,曲线和初始与终止端点相切,并且经过起点p0与终点p3。

de Casteljau Algorithm

de Casteljau算法描述了如何用多个点画出一条贝塞尔曲线。
其核心是线性插值递归
贝塞尔曲线的定义很像参数方程,给定一个参数t(范围为0-1)就能确定贝塞尔曲线上的一点,倘若取完所有t值,就能得到完整的贝塞尔曲线。

一阶贝塞尔曲线

image-20240322111557619

二阶贝塞尔曲线

image-20240322111615409

三阶贝塞尔曲线

image-20240322111637004

代数式表达

将贝塞尔曲线展开可以得到n阶贝塞尔曲线的代数表达式:
img
注:

image-20240322111712672

性质

  • 必定经过起始与终止控制点

  • 必定经与起始与终止线段相切

  • 具有仿射变换性质,可以通过移动控制点移动整条曲线

  • 凸包性质,曲线一定不会超出所有控制点构成的多边形范围

    • 凸包:墙上许多钉子,用一条橡皮筋包住最外边的钉子,再松手,橡皮筋收缩后的外框就是凸包。
      img

分段贝塞尔曲线

传统贝塞尔曲线的缺点:当控制点多的时候不好控制曲线的形状。

image-20240322142009590

分段贝塞尔曲线:将一条高次曲线分成多条低次曲线的拼接,其中用的最多的便是用很多的3次曲线来拼接。

贝塞尔曲面

img
以4 * 4 控制点的贝塞尔曲面为例:
img

  1. 在这4个控制点之下利用第一个参数 u 运用第一章的计算贝塞尔曲线的方法得到蓝色点,因为有4列,所以一共可以得到如图所示的4个蓝色点。(灰色曲线分别为每列4个点所对应的贝塞尔曲线)
  2. 在得到4个蓝色顶点之后,在这四个蓝色顶点的基础之下利用第二个参数 v 便可以成功得出贝塞尔曲面上一个点
  3. 遍历所有的 u,v值就可以成功得到一个贝塞尔曲面
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值