lstm是怎么解决梯度消失问题的

https://www.quora.com/How-does-LSTM-help-prevent-the-vanishing-and-exploding-gradient-problem-in-a-recurrent-neural-network#:~:text=The%20vanishing%20(and%20exploding)%20gradient%20problem%20is%20caused%20by%20the,controlled%20by%20the%20forget%20gate.&text=Compared%20with%20LSTM%2C%20it%20is,be%20stacked%20into%20deep%20models.

这篇文章,从直觉的角度讲解了下,我觉得比较容易理解。

 

the LSTM architecture is resistant to exploding and vanishing gradients, although mathematically both phenomena are still possible.

LSTM这个结构其实并没有彻底解决梯度的消失或爆炸问题,只是有所缓解。因为除了cell单元的更新是改为加法外,其他的路径上仍然是做乘法,所以在其他路径上仍然存在梯度的消失或爆炸问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值