network in network

Traditional non-convolutional neural net is a stack of fully connected layers. The layers extracts different levels of concepts from the input. When the input has spatial information, for instance, the input is an image, then the spatial information is lost in this process.

While in convolutional neural network, the feature maps generated from the convolutional layers has the same layer out as the input image. Thus the spatial information is still there. Convolution scans the whole image with a square filter, that extracts local information from the underlying patches. It works just like a detector.

The CNN is a extension of non-convolutional deep networks, by replacing each fully connected layers with a convolutional layer. However, there is another extension possible, why not scan the input with a whole deep network? Say, we build a traditional non-convolutional deep net for classification of spatially aligned human face, then we can apply this deep net on all patches of the input image.

In conventional CNN, usually the first layer of convolution is a detection layer of edges, corners and other low level features. Then the second layer detects higher features like parts etc. For face classification, the second layer may learn features such as eyes, noses etc. Then the third layer may combine the eyes noses into a intact face. If we convolve the image with a aligned face classifier, there is no such cascade.

In fact, partitioning an object into parts is more advantageous. 

image

For instance, in this figure, object A consists of two parts A1 and A2. object B consists of B1 and B2. Our task is to separate A from B. Say for A1, A2, B1, B2 each of them has 5 variations. Then in the sample space there are 5x5+5x5=50 variations. To classify all the 50 variations into two classes, we need 50 templates to match each of them. But if each of the parts is classified individually, then we need 5+5+5+5+2=22 templates.

  • c = category number.
  • p = number of parts in each category.
  • v = variation number of each part.

If each category is modelled from the root level, then the template it needs is:

c×vp c×vp

Else, if each parts are modelled and then combined on the root level, then it needs much smaller number of templates: 

c+(p×v×c) c+(p×v×c)

The above indicates that parts should be classified first then root, else the model will suffer from combinatorial explosion, imagine that A and B are both parts of a bigger object, the combination number increases exponentially as it layers up.

This is also the reason why we should not generate a overcomplete number of feature maps. One thing should be kept in mind that the whole network is doing abstraction. If in one layer overcomplete features are learned, there should be another layer pay the price to shrink the representation. It is true that an overcomplete set of filters (thus an overcomplete set of feature maps) can better model the underlying image patch. The number should be reduced (abstracted) before fed into the next layer whose filter covers a larger spatial region. Else combinatorial explosion can happen.

Thus I think conventional CNN contains two functionalities:

  1. Partitioning
  2. Abstraction

Partitioning is already talked about in the previous paragraph, filters are firstly very small then increases in size. Rather than saying that layers in CNN are extracting more and more abstract features, I would say they are just extracting features that are spatially larger and larger.

My understanding of abstraction is the process of classifying all the variations of A1 to the category A1 but not B1 or A2. Thus A1 is an abstract concept. In conventional CNN, the abstraction of each local patch is done through a linear classifier and a non-linear activation function. Which is definitely not a strong abstraction. Weak abstraction resolves the combinatorial explosion to some extent, but not as potent as strong abstraction.

That is why network in network in proposed.


<iframe src="https://drive.google.com/file/d/0B5bEhIhshfIeWmk0YmExazIwdlk/preview" width="640" height="480"></iframe>

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲,遇到了互联网时代才发现能补上自古以来的短板,有效的提升管理的效率和业务水平。传统的管理模式,时间越久管理的内容越多,也需要更多的人来对数据进行整理,并且数据的汇总查询方面效率也是极其的低下,并且数据安全方面永远不会保证安全性能。结合数据内容管理的种种缺点,在互联网时代都可以得到有效的补充。结合先进的互联网技术,开发符合需求的软件,让数据内容管理不管是从录入的及时性,查看的及时性还是汇总分析的及时性,都能让正确率达到最高,管理更加的科学和便捷。本次开发的医院后台管理系统实现了病房管理、病例管理、处方管理、字典管理、公告信息管理、患者管理、药品管理、医生管理、预约医生管理、住院管理、管理员管理等功能。系统用到了关系型数据库中王者MySql作为系统的数据库,有效的对数据进行安全的存储,有效的备份,对数据可靠性方面得到了保证。并且程序也具备程序需求的所有功能,使得操作性还是安全性都大大提高,让医院后台管理系统更能从理念走到现实,确确实实的让人们提升信息处理效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值