Attention 机制 – 基础篇
Hard vs Soft [1]
Attention首先分为两大类:Hard Attention 与 Soft Attention, 两者的区别在于 Hard Attention 关注一个很小的区域,而soft Attention 关注的相对要发散。 举个机器翻译方面的例子:
我是小明 --> I am XiaoMing
- 对于 Hard Attention而言,在第1时刻翻译时,只关注“我”这个词,我们翻译得到“I”,在第2时刻翻译时,关注“是”这个词,翻译结果为“am”,以此直到 t 时刻结束。 它是采用one-hot编码的方式对位置进行标记,比如第1时刻,编号信息就是[1,0,0…], 第二时刻,编码信息就是 [0, 1, 0, …], 以此类推。这样会带来一个缺点:无法采用常规优化方法来进行优化,具体的训练细节很复杂,不推荐深入了解。
- 而对于soft attention 而言,在第一时刻翻译时, “我是小明” 都对 “I” 做出了贡献,只不过贡献有大小之分,也就是说,虽然“我”这个词很重要,但是我们也不能放过其他词所带来的信息。
比较二者而言,很显然,soft attention有很大的优势,因此,对于NLP领域而言,目前大多数的研究都基于 soft Attention 进行扩展。
虽然 [1] 具有很强的开创意义,但其毕竟是关于CV领域的,不推荐精读,因此我没有写任何公式,个人十分推荐下面这篇文章来作为 Attention 的第一篇精读论文。
Global vs Local [2]
在 soft attention阵营中,很快又划分为两大阵营: Glocal attention 与 Local attention, 二者的区别在于关注的范围大小不同, 其中,Global attention 关注全部的文字序列,而 Local attention 关注的是固定的窗口中的所有文字序列。
比较二者, Global attention 的计算量要比 Local Attention 要大,尤其是对于长句子而言,效率变得很低; 而 Local Attention 只与窗口内的文字相关,因此窗口的大小就显得至关重要了,且在local attention 中多了一个预测中心词
p
t
p_t
pt 的过程,这有可能会忽略一些重要的词, 但同时,如果选择适当,那么 local attention 理应会降低无关词的干扰,当然,所带来的收益并不大。 而对于窗口的设置,论文中采用高斯分布来实现,如下:
a
^
i
,
j
=
a
i
,
j
e
−
(
s
−
p
t
)
2
2
σ
2
,
σ
=
D
2
\hat{a}_{i,j} = a_{i,j} \, e^{- \frac{(s - p_t)^2}{2 \sigma^2}}, \sigma = \frac{D}{2}
a^i,j=ai,je−2σ2(s−pt)2,σ=2D
另一方面,由于Global Attention考虑的信息较多,因此从原理上讲要更好一些,毕竟local attention 可能会忽略对当前输出很重要的词,且 Local Attention 的表现与窗口的大小密切相关,如果设置小了,可能会导致效果变得很差。
而考虑到NLP中问题的复杂性(如句子长短不一,句子之间可能有很强的相关性),因此后来的很多论文[3][4]中很少考虑采用 Local Attention 方法,且我自己在做阅读理解任务时,也基本不会考虑Local Attention, 毕竟窗口大小的设置实在太考验人了。
- Global Attention
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BjMpd8A4-1573037824548)(http://ww1.sinaimg.cn/large/006gOeiSly1g0tereh268j30zk0k00te.jpg)]
- local attention
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MTCnQqKK-1573037824550)(http://ww1.sinaimg.cn/large/006gOeiSly1g0terwkhqmj30zk0k0wf1.jpg)]
Attention的本质思想 [5][6]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-E3QsrqwP-1573037824550)(http://ww1.sinaimg.cn/large/006gOeiSly1g0tf397umyj30kn08uq34.jpg)]
在上图中,Query 表示我们的问题信息,在阅读理解问题中,其对应的就是 question,而在机器翻译中,常常采用上一时刻的输出信息 S i − 1 S_{i-1} Si−1 作为 Query;
对于 { key:value }而言,大多数情况下key与value是相同的,一般指的是第 j 个词的表示, 比如在机器翻译中, key 与 value 通常采用词的隐层输出
h
j
h_j
hj 。我们通过计算 Query 与各个 key 之间的相似性或相关性来获得
a
i
,
j
a_{i,j}
ai,j,然后对各个进行加权求和:
α
i
,
j
=
e
s
c
o
r
e
(
Q
u
e
r
y
,
K
e
y
(
j
)
)
∑
k
=
1
t
e
s
c
o
r
e
(
Q
u
e
r
y
,
K
e
y
(
k
)
)
c
i
=
∑
i
=
1
n
=
α
i
,
j
h
j
\alpha_{i,j} = \frac{e^{score(Query, Key(j))}}{\sum_{k=1}^t e^{score(Query, Key(k))}} \\ c_i= \sum_{i=1}^n = \alpha_{i,j} h_j
αi,j=∑k=1tescore(Query,Key(k))escore(Query,Key(j))ci=i=1∑n=αi,jhj
由上式可以看到,对于Attention机制的整个计算过程,可以总结为以下三个过程:
- socre 函数: 根据 Query 与 Key 计算两者之间的相似性或相关性, 即 socre 的计算。
- **注意力权重计算:**通过一个softmax来对值进行归一化处理获得注意力权重值, 即 a i , j a_{i,j} ai,j 的计算。
- **加权求和生成注意力值:**通过注意力权重值对value进行加权求和, 即 c i c_i ci 的计算。
总的来说,Attention 无论如何变化,总是万变不离其宗。 对于大多数 Attention 的文章来说,其变化主要在于 Query, Key, Value 的定义以及第一阶段 Score 的计算方法,下面我们来详细讨论一下。
Score 函数的选择 [6][2]
Score 函数本质的思想就是度量两个向量的相似度。
常见的方式主要有以下三种:
- 求点积:学习快,适合向量再同一空间中,如 Transformer 。
s c o r e ( Q u e r y , K e y ( j ) ) = Q u e r y ⋅ K e y ( j ) score(Query, Key(j)) = Query \cdot Key(j) score(Query,Key(j))=Query⋅Key(j)
- Cosine 相似性
s c o r e ( Q u e r y , K e y ( j ) ) = Q u e r y ⋅ K e y ( j ) ∣ ∣ Q u e r y ∣ ∣ ⋅ ∣ ∣ K e y ( j ) ∣ ∣ score(Query, Key(j)) = \frac{Query \cdot Key(j)}{||Query|| \cdot ||Key(j)||} score(Query,Key(j))=∣∣Query∣∣⋅∣∣Key(j)∣∣Query⋅Key(j)
- MLP网络
s c o r e ( Q u e r y , K e y ( j ) ) = M L P ( Q u e r y , K e y ( j ) ) g e n e r a l : s c o r e ( Q u e r y , K e y ( j ) ) = Q u e r y W K e y ( j ) c o n c a t : s c o r e ( Q u e r y , k e y ( j ) ) = W [ Q u e r y ; K e y ( j ) ] score(Query, Key(j)) = MLP(Query, Key(j)) \\ general: score(Query, Key(j)) = Query \, W \, Key(j) \\ concat: score(Query, key(j)) = W \, [Query;Key(j) ] score(Query,Key(j))=MLP(Query,Key(j))general:score(Query,Key(j))=QueryWKey(j)concat:score(Query,key(j))=W[Query;Key(j)]
一般情况下,采用MLP网络更加灵活一些,且可以适当的扩展层以及改变网络结构,这对于一些任务来说是很有帮助的。
Query, Key, Value 的定义
对于一个 Attention 机制而言,定义好 Query, Key, Value 是至关重要的,这一点我个人认为是一个经验工程,看的多了,自然就懂了。 我这里简单举阅读理解与机器翻译的例子:
- 对于机器翻译而言,常见的是: Query 就是上一时刻 Decoder 的输出 S i − 1 S_{i-1} Si−1, 而Key,Value 是一样的,指的是 Encoder 中每个单词的上下文表示。
- 对于英语高考阅读理解而言, Query 可以是问题的表示,也可以是问题+选项的表示, 而对于Key, Value而言,往往也都是一样的,都指的是文章。而此时Attention的目的就是找出文章中与问题或问题+选项的相关片段,以此来判断我们的问题是否为正确的选项。
由此我们可以看出, Attention 中 Query, Key, Value 的定义都是很灵活的,不同的定义可能产生不一样的化学效果,比如 Self-Attention ,下面我就好好探讨探讨这一牛逼思想。
Self-Attention [5]
Self-Attention 可以说是最火的 Attention 模型了,其在最近很火的 Bert 中也起到了重要的作用,最关键的是,其可与 LSTM 一较高低。
这篇文章是十分值得精读,反复看的,因为其真正的将 Attention 用到了另一个新的高度,膜拜 Google。鉴于篇幅所限,本文就不赘述其中详细原理了,而是简述一下其核心思想。
Self-Attention 的本质就是自己注意自己, 粗暴点来说,就是,Q,K,V是一样的,即:
A
t
t
e
n
t
i
o
n
v
a
l
u
e
=
A
t
t
e
n
t
i
o
n
(
W
Q
X
,
W
K
X
,
W
V
X
)
Attention \, value = Attention(W_QX,W_KX,W_VX)
Attentionvalue=Attention(WQX,WKX,WVX)
它的内部含义是对序列本身做 Attention,来获得序列内部的联系,如下图所示 [7]。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ly0zuQ4D-1573037824551)(http://ww1.sinaimg.cn/large/006gOeiSly1g0u0j6zj7hg30go0er1kx.gif)]
这其实是有点类似于我们在 Embedding 层的时候采用 LSTM 来获得输入序列的上下文表示,但与 LSTM 不同之处在于Self - Attention 更能够把握句子中词与词的句法特征或语义特征,但另一方面其对于序列的位置信息不能很好的表示,这也是为什么会采用 Postition Embedding 来对位置信息做一个补充,但对于一些对位置信息敏感的任务,position Embedding 所带来的信息可能会不够。
之所以说这篇文章具有开创意义,是因为其将Attention用到了一个基础单元上, 为取代LSTM提供了一种可能。
Reference
[1] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention – 不推荐
[2] Effective Approaches to Attention-based Neural Machine Translation
[3] Neural Machine Translation by Jointly Learning to Align and Translate
[4] Neural Responding Machine for Short-Text Conversation
[5] Attention is all you need
[7] https://zhuanlan.zhihu.com/p/47282410