构建第一个神经网络

@莫烦Python

视频中讲解了如何构架第一个神经网络,使用到的库函数为TensorFlow和numpy。


###使用软件anaconda3


import tensorflow as tf
import numpy as np


#导入模块以后,构建一个添加神经网络层的函数 add_layer(),其中需要设置的神经网络层的变量为输入输出和激励函数,同时需要告知函数输入输出的大小(size)


def add_layer(inputs,in_size,out_size,activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs,Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

#这里定义了x_data,y_data数组,'[:,np.newaxis]作用是使x_data变成一个有1个属性(attribute),300个训练数据的数组

#noise的作用是使得训练数组不为标准的函数,存在一定的噪音。(防止过拟合?)

x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

#placeholder负责存储数组的数组

xs = tf.placeholder(tf.float32,[None,1])

ys = tf.placeholder(tf.float32,[None,1]) 


#添加两层神经网络分别为l1,和prediction,所以一共有三层神经网络(输入,输出,隐藏)

l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) #输入层,输入到有10个神经元的隐藏层
prediction = add_layer(l1,10,1,activation_function=None) #输出层,从隐藏层输出到输出层

#误差最小化
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
            reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)


init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)


for i in range(1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i%50==0:
        print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值