@莫烦Python
视频中讲解了如何构架第一个神经网络,使用到的库函数为TensorFlow和numpy。
###使用软件anaconda3
import tensorflow as tf
import numpy as np
#导入模块以后,构建一个添加神经网络层的函数 add_layer(),其中需要设置的神经网络层的变量为输入输出和激励函数,同时需要告知函数输入输出的大小(size)
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs,Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
#这里定义了x_data,y_data数组,'[:,np.newaxis]作用是使x_data变成一个有1个属性(attribute),300个训练数据的数组
#noise的作用是使得训练数组不为标准的函数,存在一定的噪音。(防止过拟合?)
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
#placeholder负责存储数组的数组
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
#添加两层神经网络分别为l1,和prediction,所以一共有三层神经网络(输入,输出,隐藏)
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) #输入层,输入到有10个神经元的隐藏层
prediction = add_layer(l1,10,1,activation_function=None) #输出层,从隐藏层输出到输出层
#误差最小化
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))