DeepSeek V3 模型微调(SFT)技术详解
目录
- 引言
- 背景知识
- 2.1 深度学习与预训练模型
- 2.2 微调(Fine-tuning)的概念
- 2.3 监督微调(Supervised Fine-tuning, SFT)
- DeepSeek V3 模型概述
- 3.1 模型架构
- 3.2 预训练任务
- 3.3 模型性能
- 监督微调(SFT)技术详解
- 4.1 数据准备
- 4.1.1 数据收集与清洗
- 4.1.2 数据标注
- 4.1.3 数据增强
- 4.2 模型初始化
- 4.2.1 预训练模型加载
- 4.2.2 参数初始化策略
- 4.3 损失函数设计
- 4.3.1 分类任务中的损失函数
- 4.3.2 回归任务中的损失函数
- 4.3.3 多任务学习中的损失函数
- 4.4 优化器选择与配置
- 4.4.1 常见优化器介绍
- 4.4.2 学习率调度策略
- 4.5 训练过程
- 4.5
- 4.1 数据准备