DeepSeek V3 模型微调(SFT)技术详解

DeepSeek V3 模型微调(SFT)技术详解

目录

  1. 引言
  2. 背景知识
    • 2.1 深度学习与预训练模型
    • 2.2 微调(Fine-tuning)的概念
    • 2.3 监督微调(Supervised Fine-tuning, SFT)
  3. DeepSeek V3 模型概述
    • 3.1 模型架构
    • 3.2 预训练任务
    • 3.3 模型性能
  4. 监督微调(SFT)技术详解
    • 4.1 数据准备
      • 4.1.1 数据收集与清洗
      • 4.1.2 数据标注
      • 4.1.3 数据增强
    • 4.2 模型初始化
      • 4.2.1 预训练模型加载
      • 4.2.2 参数初始化策略
    • 4.3 损失函数设计
      • 4.3.1 分类任务中的损失函数
      • 4.3.2 回归任务中的损失函数
      • 4.3.3 多任务学习中的损失函数
    • 4.4 优化器选择与配置
      • 4.4.1 常见优化器介绍
      • 4.4.2 学习率调度策略
    • 4.5 训练过程
      • 4.5
### 如何对 DeepSeek 进行微调 对于希望利用现有模型并针对特定任务优化性能的研究者和开发者而言,微调是一个非常有效的方式。当涉及到像 DeepSeek-7B-chat这样的大型语言模型时,可以采用低秩适应(LoRA, Low-Rank Adaptation)方法来实现高效且有效的参数更新[^2]。 #### 准备环境与依赖项安装 为了能够顺利地执行微调过程,首先需要准备合适的开发环境以及必要的库文件: ```bash pip install transformers peft datasets torch accelerate ``` 这些包提供了构建、训练和支持深度学习模型所需的功能组件。 #### 加载预训练模型及分词器 接下来要加载预先训练好的DeepSeek-7B-chat模型及其配套使用的分词工具: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "path_to_DeepSeek_7b_chat" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` 这段代码片段展示了如何通过指定路径获取所需的资源。 #### 配置 LoRA 参数设置 定义用于调整原始权重矩阵变化程度的关键超参,这有助于控制新学到的知识量而不破坏原有能力: ```python lora_rank = 8 # 可根据实际需求调整此数值大小 target_modules = ["q_proj", "v_proj"] # 对应于自注意力机制中的查询向量投影层和价值向量投影层 config = { "r": lora_rank, "lora_alpha": 32, "lora_dropout": 0.1, } ``` 上述配置指定了应用LoRA技术的具体细节,包括影响范围内的模块名称列表等信息。 #### 应用 LoRA 并编译模型 完成以上准备工作之后就可以正式开启微调流程了,在这里会创建一个新的带有LoRA结构的版本,并对其进行编译以便后续操作: ```python import peft peft_config = peft.LoRAConfig(target_modules=target_modules, **config) model.enable_input_require_grads() model.gradient_checkpointing_enable() # 将模型转换成支持LoRA的形式 model = peft.get_peft_model(model, peft_config) print("Total number of parameters:", model.num_parameters()) ``` 该部分实现了将标准架构转变为适合进行增量式改进的状态,同时也打印出了当前状态下总的可训练参数数量作为参考依据。 #### 数据集处理与迭代训练 最后一步就是准备好用来指导模型学习的数据集合制定相应的策略来进行多轮次的学习活动直至达到预期效果为止: ```python from datasets import load_dataset from transformers import Trainer, TrainingArguments dataset = load_dataset('your_custom_dataset') # 替换为自己的数据源链接或本地路径 train_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=4, gradient_accumulation_steps=4, learning_rate=2e-5, logging_dir='./logs', save_total_limit=2, ) trainer = Trainer( model=model, args=train_args, train_dataset=dataset['train'], tokenizer=tokenizer, ) trainer.train() ``` 至此已经完成了整个基于Transformers框架下使用PeFT库对DeepSeek-7B-chat实施LoRA方式下的微调全过程描述。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值