点击上方“阿三先生”↑↑↑关注
模丨型丨微丨调
目录
背景介绍
现存在的大模型已经很完善了,但在特殊场景下,他们的完成效果并不理想,也存在很多禁忌。主要体现在以下方面:
1、由于不可抗原因,对输出内容限制,对敏感内容禁止输出。
2、达不到理想的回复效果,忠实性不太理想,会天马行空。
3、想对产品做推广回复,在回复中要忠于产品,推广产品。
4、响应时长及稳定性问题
Lora 微调
大模型的微调需要较多资源,lora用于解决训练资源匮乏时的模型微调。主要思路是,在原模型中增加低秩矩阵,对低秩矩阵进行训练,以达到对模型微调的目的。
目前一般通过 peft 库来实现模型的 LoRA 微调。peft 库是 huggingface 开发的第三方库,其中封装了包括 LoRA、Adapt Tuning、P-tuning 等多种高效微调方法,可以基于此便捷地实现模型的 LoRA 微调。
这里介绍如何基于transformers、peft 等框架,对 DeepSeek-7B-chat 模型进行 Lora 微调。
效果展示
环境安装
在完成基本环境配置和本地模型部署的情况下,你还需要安装一些第三方库,包括但不限于如下:
pip install transformers==4.35.2
pip install peft==0.4.0
pip install datasets==2.10.1
pip install accelerate==0.20.3
pip install tiktoken
pip install transformers_stream_generator