语义分割--Large Kernel Matters--Improve Semantic Segmentation by Global Convolutional Network

Large Kernel Matters–Improve Semantic Segmentation by Global Convolutional Network
https://arxiv.org/abs/1703.02719

语义分割问题需要同时解决两个问题:classification 和 localization, 将图像中的每个物体精确分割出来,同时对每个物体进行分类。分类和定位这两个问题对于CNN 设计要求有所区别。
For the classification task, the models are required to be invariant to various transformations like translation and rotation.

But for the localization task, models should be transformation-sensitive, i.e., precisely locate every pixel for each semantic category
这里写图片描述
当前的语义分割算法主要侧重于 localization , which may be suboptimal for classification
这里写图片描述

怎么解决这个contradictory 了? 这里我们的策略是使用 Large Kernel

这里我们设计了一个 Global Convolutional Network 采用 Large Kernel
from the localization view, the structure must be fully-convolutional without any fully-connected layer or global pooling layer that used by many classification networks,since the latter will discard localization information

from the classification view, motivated by the densely-connected structure of classification models, the kernel size of the convolutional structure should be as large as possible.

这里写图片描述

对于 GCN 模块计算量问题: Instead of directly using larger kernel or global convolution, our GCN module employs a
combination of 1 × k + k × 1 and k × 1 + 1 × k convolutions, which enables densely connections within a large k×k region inthe feature map.

为了提升物体边缘分割精度,提出Boundary Refinement
we propose a Boundary Refinement (BR) block shown in Figure 2 C. Here, we models the boundary alignment as a residual structure.

Kernal 尺寸越大,效果越好
这里写图片描述

GCN 与其他两个convolution结构 对比:
这里写图片描述

这里写图片描述
这里写图片描述

这里写图片描述
上面三个图主要证明 GCN 效果比其他卷积结构好

这里写图片描述

这里写图片描述

PASCAL VOC 2012 test set
这里写图片描述

Cityscapes test set
这里写图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值