Boosting 简介--A (small) introduction to Boosting

A (small) introduction to Boosting
https://codesachin.wordpress.com/tag/adaboost/

这里翻译了一下这篇博客,对 boosting 介绍的很好

What is Boosting? 什么是 Boosting
Boosting is a machine learning meta-algorithm that aims to iteratively build an ensemble of weak learners, in an attempt to generate a strong overall model.
下面分别对上面的定义进行逐词解析
1)weak learners 弱学习器
A ‘weak learner’ is any ML algorithm (for regression/classification) that provides an accuracy slightly better than random guessing.
就是比随机猜测好一点的一个机器学习算法。随机猜测的准确率是 50%,所以任何一个算法其准确率超过50% 都是一个弱学习器。
常用的弱学习器有 Decision Stumps or smaller Decision Trees

2) Ensemble
Boosting 构建的模型最终的输出就是 所以弱学习器的 权重和
The overall model built by Boosting is a weighted sum of all of the weak learners. The weights and training given to each ensures that the overall model yields a pretty high accuracy (sometimes state-of-the-art)

3) Iteratively build 许多组合方法如 bagging/random forests ,这些模型中的弱学习器都可以并行独立训练的,因为这些弱学习器之间没有依赖性。但是 Boosting 不是这样的。 在每个步骤, Boosting 尝试评估当前已构建的模型 shortcomings ,然后生成一个 弱学习器来解决这个 shortcomings ,然后将这个弱学习器加到总体模型中去。所以整个训练过程是序列进行的。

4) Meta-algorithm
因为 Boosting 本身不是一个机器学习算法,它只是将一些基础算法构建成一个强算法,所以说它是 ‘meta’algorithm
Since Boosting isn’t necessarily an ML algorithm by itself, but rather uses other (basic) algorithms to build a stronger one, it is said to be a ‘meta’ algorithm.

How does Boosting work?
这里写图片描述

通常一个基于 Boosting 框架的回归算法工作流程如下:
这里写图片描述
在 Boosting 的每个迭代步骤中,通过引入一个新的弱学习器到当前的 ensemble 中来提升当前模型的性能,这个新引入的弱学习器主要负责解决当前模型不能解决的那些样本。 这个ensemble 不仅减少 bias 也同样降低 variance

Each of the iterations in Boosting essentially tries to ‘improve’ the current model by introducing another learner into the ensemble. Having such an ensemble not only reduces the bias (which is generally pretty high for weak learners), but also the variance (since multiple learners contribute to the overall output, each with their own unique training).

Boosting 有很多种版本,其差别主要在上面算法步骤中的一些细节上。
例如 Gradient Boosting 主要的思路是 计算 Loss function 在当前步骤某一 data point 的梯度 gradient ,然后用一个新的弱学习器来学习预测这个梯度 gradient, 这个弱学习器的权重通过最小化损失函数值得到 The weight is then optimized so as to minimize the total Loss value

这里写图片描述

11

boosting-crowd-counting-via-multifaceted-attention是一种通过多方面注意力提升人群计数的方法。该方法利用了多个方面的特征来准确估计人群数量。 在传统的人群计数方法中,往往只关注人群的整体特征,而忽略了不同区域的细节。然而,不同区域之间的人群密度可能存在差异,因此细致地分析这些区域是非常重要的。 该方法首先利用卷积神经网络(CNN)提取图像的特征。然后,通过引入多个注意力机制,分别关注图像的局部细节、稀疏区域和密集区域。 首先,该方法引入了局部注意力机制,通过对图像的局部区域进行加权来捕捉人群的局部特征。这使得网络能够更好地适应不同区域的密度变化。 其次,该方法采用了稀疏区域注意力机制,它能够识别图像中的稀疏区域并将更多的注意力放在这些区域上。这是因为稀疏区域往往是需要重点关注的区域,因为它们可能包含有人群密度的极端变化。 最后,该方法还引入了密集区域注意力机制,通过提取图像中人群密集的区域,并将更多的注意力放在这些区域上来准确估计人群数量。 综上所述,boosting-crowd-counting-via-multifaceted-attention是一种通过引入多个注意力机制来提高人群计数的方法。它能够从不同方面细致地分析图像,并利用局部、稀疏和密集区域的特征来准确估计人群数量。这个方法通过考虑人群分布的细节,提供了更精确的人群计数结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值