1、信息熵
信息论中的信息量和信息熵。
信息量:
信息量是对信息的度量,就跟温度的度量是摄氏度一样,信息的大小跟随机事件的概率有关。
例如: 在哈尔滨的冬天,一条消息说:哈尔滨明天温度30摄氏度,这个事件肯定会引起轰动,因为它发生的概率很小(信息量大)。日过是夏天,“明天温度30摄氏度”可能没有人觉得是一个新闻,因为夏天温度30摄氏度太正常了,概率太大了(信息点太小了)
从这个例子中可以看出 一个随机事件的信息量的大小与其发生概率是成反相关的。
香农定义的一个事件的信息信息量为:I(X) = log2(1/p) 其中p为事件X发生的概率
信息熵:Entropy
一个随机变量 X 可以代表n个随机事件,对应的随机变为X=xi,
那么熵的定义就是 X的加权信息量。
H(x) = p(x1)I(x1)+…+p(xn)I(x1)
其中p(xi)代表xi发生的概率
例如有32个足球队比赛,每一个队的实力相当,那么每一个对胜出的概率都是1/32
那么 要猜对哪个足球队胜出 非常困难,
这个时候的熵H(x) = 32 * (1/32)log(1/(1/32)) = 5
熵也可以作为一个系统的混乱程度的标准
试想如果32个队中有一个是ac米兰,另外31个对是北邮计算机1班队,2班,…31班
那么几乎只有一个可能 ac米兰胜利的概率是100%,其他的都是0%,这个系统的熵
就是 1*log(1/1) = 0. 这个系统其实是有序的,熵很小,而前面熵为5 系统处于无序状态。
2、基尼不纯度