python绘制横向水平柱状条形图Bar

python绘制横向水平柱状条形图Bar

import matplotlib
import random
import matplotlib.pyplot as plt

# 中文乱码和坐标轴负号处理。
matplotlib.rc('font', family='SimHei', weight='bold')
plt.rcParams['axes.unicode_minus'] = False

#城市数据。
city_name = ['北京', '上海', '广州', '深圳', '成都']

#数组反转。
city_name.reverse()

#装载随机数据。
data = []
for i in range(len(city_name)):
        data.append(random.randint(100, 150))

#绘图。
fig, ax = plt.subplots()
b = ax.barh(range(len(city_name)), data, color='#6699CC')

#为横向水平的柱图右侧添加数据标签。
for rect in b:
    w = rect.get_width()
    ax.text(w, rect.get_y()+rect.get_height()/2, '%d' %
            int(w), ha='left', va='center')

#设置Y轴纵坐标上的刻度线标签。
ax.set_yticks(range(len(city_name)))
ax.set_yticklabels(city_name)

#不要X横坐标上的label标签。
plt.xticks(())

plt.title('水平横向的柱状图', loc='center', fontsize='25',
          fontweight='bold', color='red')

plt.show()

 

运行结果:

 

 

可以简单的绘制一个水平横向的柱状图:

import matplotlib.pyplot as plt
import random
import matplotlib

matplotlib.rc('font', family='SimHei', weight='bold')

city_name = ['北京', '上海', '广州', '深圳', '成都']
city_name.reverse()

data = []
for i in range(len(city_name)):
        data.append(random.randint(100, 200))

colors = ['red', 'yellow', 'blue', 'green', 'gray']
colors.reverse()

plt.barh(range(len(data)), data, tick_label=city_name, color=colors)

#不要X横坐标标签。
#plt.xticks(())

plt.show()

输出结果如图:

### 使用 Python 绘制横向柱状图 绘制横向柱状图可以利用 `matplotlib` 和 `seaborn` 库实现。以下是具体方法和示例代码。 #### 方法说明 通过 `matplotlib` 的 `barh()` 函数可以直接绘制横向柱状图[^1]。而 `seaborn` 提供了更高级的接口,例如 `sns.barplot()` 或者其他绘图函数支持自定义样式[^4]。 #### 示例代码 以下是一个完整的例子,展示如何使用 `matplotlib` 和 `seaborn` 来绘制带标签的横向柱状图: ```python import matplotlib.pyplot as plt import seaborn as sns import pandas as pd # 数据准备 data = {'Category': ['A', 'B', 'C', 'D'], 'Values': [23, 17, 35, 29]} df = pd.DataFrame(data) # 创建画布 fig, ax = plt.subplots() # 绘制横向柱状图 (Matplotlib) ax.barh(df['Category'], df['Values']) # 添加数值标签 for i, v in enumerate(df['Values']): ax.text(v + 0.5, i, str(v), color='blue', va='center') # 设置标题和轴标签 ax.set_title('Horizontal Bar Chart Example') ax.set_xlabel('Values') ax.set_ylabel('Categories') # 显示图像 plt.show() ``` 如果希望进一步美化图表并应用 `seaborn` 调色板,则可如下操作: ```python # 加载Seaborn默认风格 sns.set(style="whitegrid") # 使用Seaborn绘制横向柱状图 sns.barplot(y="Category", x="Values", data=df, palette=sns.color_palette("Blues_d")) # 自定义显示效果 plt.title('Styled Horizontal Bar Chart with Seaborn') plt.xlabel('Values') plt.ylabel('Categories') # 展示最终结果 plt.show() ``` 上述两段代码分别展示了基于纯 `matplotlib` 和集成 `seaborn` 风格的设计方式[^3]。 --- ### 关键点解析 - **数据结构**:通常需要一个包含分类变量及其对应值的数据表。 - **标签设置**:为了增强可视化效果,在条形末端添加具体的数值作为标注是非常常见的做法。 - **颜色定制**:无论是基础的颜色调整还是复杂的渐变配色方案都可以轻松完成。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangphil

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值